[1]
Saliba, S. Valverde, Serrano C.; Keilitz, J.; Kahn, M.L.; Mingotaud, C.; Haag, R.; Marty, J.D. Hyperbranched polymers for the formation and stabilization of ZnO nanoparticles. Chem. Mater., 2010, 22, 6301-6309.
[2]
Tang, X.S.; Choo, E.S.G.; Li, L.; Ding, J.; Xue, J.M. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications. Chem. Mater., 2010, 22, 3383-3388.
[3]
Urban, B.E.; Neogi, P.; Senthilkumar, K.; Rajpurohit, S.K.; Jagadeeshwaran, P.; Seongcheol, K.; Fujita, Y.; Neogi, A. Bioimaging using the optimized nonlinear optical properties of ZnO nanoparticles. IEEE J. Sel. Top. Quantum Electron., 2012, 18, 1451-1456.
[4]
Zhang, H.J.; Xiong, H.M. Biological applications of ZnO nanoparticles. Curr. Mol. Imaging, 2013, 2, 177-192.
[5]
Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6, 2732-2739.
[6]
Babayevska, N.; Wozniak, A.; Grzeskowiak, B.F.; Wiveger, M.; Stomski, R.; Zalewski, T.; Drobna, M. Woznaik, Bunych M.; Jurga, S. ZnO@Gd2O3 core/ shell nanoparticles for biomedical applications: Physicichemical, in vitro and in vivo characterization. Mater. Sci. Eng. C. Mater. Biol. Appl., 2017, 80, 603-615.
[7]
Babayevska, N.; Florczak, P.; Woznaik-Bunych, M.; Jarek, M.; Mwaczyk, G.; Zalewski, T.; Jurga, S. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI. Appl. Surf. Sci., 2017, 404, 129-137.
[8]
Aruguete, D.M.; Kim, B.; Hochella, M.F., Jr; Ma, Y.; Cheng, Y.; Hoegh, A.; Liu, J.; Pruden, A. Antimicrobial nanotechnology: Its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ. Sci. Process. Impacts, 2013, 15, 93-102.
[9]
Zhu, X.; Radovik-Moreno, A.F.; Wu, J.; Langer, R.; Shi, J. Nanomedicine in the management of microbial infection-overview and perspectives. Nano Today, 2014, 9, 478-498.
[10]
Zhang, L.; Pornpattananangkul, D.; Hu, C.M.; Huang, C.M. Development of nanoparticles for anti microbial drug delivery. Curr. Med. Chem., 2010, 17, 585-594.
[11]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomedicine, 2012, 7, 2767.
[12]
Raghupati, K.R.; Koodali, R.T.; Manna, A.C. Size dependant bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27, 4020-4028.
[13]
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; deLarramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, J.W. Mahmoudi. M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30, 499-511.
[14]
Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomedicine, 2010, 5, 277.
[15]
Jin, T.; He, Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res., 2011, 13, 6877-6885.
[16]
Arekha, M.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep., 2015, 5, 14813.
[17]
Alpaslan, E.; Geilich, B.M.; Yazici, H.; Webster, T.J. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacterial growth. Sci. Rep., 2017, 7, 45859.
[18]
Sawant, V.J.; Bamane, S.R. PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. J. Drug Deliv. Sci. Technol., 2017, 43, 397-408.
[19]
Sawant, V.J.; Bamane, S.R.; Patil, S.B.; Shejwal, R.V. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mater., 2016, 417, 222-229.
[20]
Sawant, V.J.; Bamane, S.R.; Kanase, D.G.; Patil, S.B.; Ghosh, J. Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Advances, 2016, 6, 66745-66755.