Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Lab-on-a-chip Dielectrophoretic Manipulation of Beta-2 Microglobulin for Toxin Removal in An Artificial Kidney

Author(s): Muhammad Izzuddin Abd Samad, Aminuddin Ahmad Kayani, Ahmad Sabirin Zoolfakar, Azrul Azlan Hamzah, Burhanuddin Yeop Majlis and Muhamad Ramdzan Buyong*

Volume 11, Issue 1, 2019

Page: [40 - 46] Pages: 7

DOI: 10.2174/1876402911666181218145459

Abstract

Background: This paper presents a fundamental study of protein manipulation under the influence of dielectrophoretic (DEP) force for a lab-on-a-chip platform.

Objective: Protein manipulation is dependent on the polarisation factor of protein when exposed to an electric field. Therefore the objective of this work is a microfluidic device and measurement system are used to characterise the human beta-2 microglobulin (β2M) protein via lateral attractive forces and vertical repulsive forces by means of DEP responses.

Method: The manipulation of the β2M protein was conducted using a microfluidic platform with a tapered DEP microelectrode and the protein concentration was quantified based on a biochemical interaction using an Enzyme-Linked Immunosolvent Assay (ELISA). The protein distribution has been analysed based on the β2M concentration for each microfluidic outlet.

Results: At 300 kHz, the protein experienced a negative DEP (nDEP) with of 83.3% protein distribution on the middle microchannel. In contrast, the protein experienced a positive DEP (pDEP) at 1.2 MHz with of 78.7% of protein on the left and right sides of the microchannel.

Conclusion: This is concept proved that the tapered DEP microelectrode is capable of manipulating a β2M via particle polarisation, hence making it suitable to be utilised for purifying proteins in biomedical application.

Keywords: Dielectrophoresis, Beta-2-microglobulin, Lab on chip, artificial kidney, hollow fibre membrane, end-stage renal disease.

Graphical Abstract

[1]
The National Renal Registry. 23rd Report of the Malaysian Dialysis and Transplant Registry 2014 2015.
[2]
The National Renal Registry. 22nd Report of the Malaysian Dialysis and Transplant Registry 2014. 2015.
[3]
Ramin, S. Hemodialysis: Diffusion and ultrafiltration. Austin J. Nephrol. Hypertens., 2014, 1(1010)
[4]
Pannu, N.; Gibney, R.N. Renal replacement therapy in the intensive care unit. Ther. Clin. Risk Manag., 2005, 1(2), 141.
[5]
Mehta, R.L.; Letteri, J.M. Current status of renal replacement therapy for acute renal failure. Am. J. Nephrol., 1999, 19(3), 377-382.
[6]
Tattersall, J. Clearance of beta-2-microglobulin and middle molecules in haemodiafiltration.In:Hemodiafiltration; Karger Publishers, 2007, Vol. 158, pp. 201-209.
[7]
Leypoldt, J.K.; Holmes, C.J.; Rutherford, P. Clearance of middle molecules during haemodialysis and haemodiafiltration: New insights. Nephrol. Dial. Transplant., 2012, 27(12), 4245-4247.
[8]
Clark, W.R.; Winchester, J.F. Middle molecules and small-molecular-weight proteins in ESRD: Properties and strategies for their removal. Adv. Ren. Replace. Ther., 2003, 10(4), 270-278.
[9]
Estácio, S.G.; Krobath, H.; Vila-Viçosa, D.; Machuqueiro, M.; Shakhnovich, E.I.; Faísca, P.F. A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. PLOS Comput. Biol., 2014, 10(5), e1003606.
[10]
Moeller, M.J.; Kuppe, C. Point: Proposing the electrokinetic model. Perit. Dial. Int., 2015, 35(1), 5-8.
[11]
Moeller, M.J.; Tenten, V. Renal albumin filtration: Alternative models to the standard physical barriers. Nat. Rev. Nephrol., 2013, 9(5), 266.
[12]
Adekanmbi, E.O.; Srivastava, S.K. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. Lab Chip, 2016, 16(12), 2148-2167.
[13]
Cheng, I.F.; Huang, W.L.; Chen, T.Y.; Liu, C.W.; Lin, Y.D.; Su, W.C. Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis. Lab Chip, 2015, 15(14), 2950-2959.
[14]
Chen, Y.; Li, P.; Huang, P.H.; Xie, Y.; Mai, J.D.; Wang, L.; Nguyen, N.T.; Huang, T.J. Rare cell isolation and analysis in microfluidics. Lab Chip, 2014, 14(4), 626-645.
[15]
d’Amico, L.; Ajami, N.J.; Adachi, J.A.; Gascoyne, P.R.; Petrosino, J.F. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip, 2017, 17(7), 1340-1348.
[16]
Pan, J.A.; Peng, X.; Gao, Y.; Li, Z.; Lu, X.; Chen, Y.; Ishaq, M.; Liu, D.; DeDiego, M.L.; Enjuanes, L.; Guo, D. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One, 2008, 3(10), e3229.
[17]
Nguyen, N.T. Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale. Microfluid. Nanofluidics, 2012, 12(1-4), 1-6.
[18]
Li, X.; Tao, Y.; Lee, D.H.; Wickramasinghe, H.K.; Lee, A.P. In situ mRNA isolation from a microfluidic single-cell array using an external AFM nanoprobe. Lab Chip, 2017, 17(9), 1635-1644.
[19]
Chan, J.Y.; Ahmad Kayani, A.B.; Md Ali, M.A.; Kok, C.K.; Majlis, B.Y.; Hoe, S.L.; Marzuki, M.; Khoo, A.S.; Ostrikov, K.; Rahman, M.A.; Sriram, S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics, 2018, 12(1), 011503.
[20]
Koklu, A.; Sabuncu, A.C.; Beskok, A. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes. Electrophoresis, 2017, 38(11), 1458-1465.
[21]
Ali, M.A.; Ostrikov, K.K.; Khalid, F.A.; Majlis, B.Y.; Kayani, A.A. Active bioparticle manipulation in microfluidic systems. RSC Advances, 2016, 6(114), 113066-113094.
[22]
Iswardy, E.; Tsai, T.C.; Cheng, I.F.; Ho, T.C.; Perng, G.C.; Chang, H.C. A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection. Biosens. Bioelectron., 2017, 95, 174-180.
[23]
Pethig, R. Dielectric and electrical properties of biological materials. J. Bioelectr, 1985, 4(2), vii-ix.
[24]
Hughes, M.P. Nanoelectromechanics in Engineering and Biology; CRC Press, 2002.
[25]
Othamany, N.R.A.T.; Aziz, N.A.; Samad, M.I.A.; Buyong, M.R.; Majlis, B.Y. Separation of micro engineered particle using dielectrophoresis technique. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 69-72.
[26]
Rahim, M.K.A.; Buyong, M.R.; Jamaludin, N.M.A.; Hamzah, A.A.; Siow, K.S.; Majlis, B.Y. Characterization of permittivity and conductivity for ESKAPE pathogens detection. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 132-135.
[27]
Jamaludin, N.M.A.; Buyong, M.R.; Rahim, M.K.A.; Hamzah, A.A.; Mailis, B.Y.; Bais, B. Dielectrophoresis: Characterization of triple-negative breast cancer using Clausius-Mossotti factor. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 85-88.
[28]
Samad, M.I.A.; Buyong, M.R.; Yunus, F.W.; Siow, K.S.; Hamzah, A.A.; Majlis, B.Y. Voltage characterization on dielectrophoretic force response to hematologic cell manipulation. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 13-16.
[29]
Buyong, M.R.; Larki, F.; Faiz, M.S.; Hamzah, A.A.; Yunas, J.; Majlis, B.Y. A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation. Sensors, 2015, 15(5), 10973-10990.
[30]
Buyong, M.R.; Larki, F.; Takamura, Y.; Majlis, B.Y. Tapered microelectrode array system for dielectrophoretically filtration: Fabrication, characterization, and simulation study. J. Micro. Nanolithogr. MEMS MOEMS, 2017, 16(4), 044501.
[31]
Manual procedure 50383D (PRB-5038), CELL BIOLABS (2016),Human Beta 2 Microglobulin ELISA Kit’, Retrieved from: https://www.cellbiolabs.com/human-beta-2-microglobulin-elisa-kit (Accessed on November 2, 2017).
[32]
Buyong, M.R.; Larki, F.; Takamura, Y.; Aziz, N.A.; Yunas, J.; Hamzah, A.A.; Majlis, B.Y. Implementing the concept of dielectrophoresis in glomerular filtration of human kidneys. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2016, pp. 33-37.

© 2024 Bentham Science Publishers | Privacy Policy