[1]
Venkatesan, V.; Madhira, S.L.; Malakapalli, V.M.; Chalasani, M.; Shaik, S.N.; Seshadri, V.; Kodavalla, V.; Bhonde, R.R.; Nappanveettil, G. Obesity, insulin resistance, and metabolic syndrome: a study in WNIN/Ob rats from a pancreatic perspective. BioMed Res. Int., 2013, 2013617569.
[2]
Madhira, S.L.; Challa, S.S.; Chalasani, M.; Nappanveethl, G.; Bhonde, R.R.; Ajumeera, R.; Venkatesan, V. Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats. PLoS One, 2012, 7(10), e4806.
[3]
Madhira, S.L.; Nappanveethl, G.; Kodavalla, V.; Venkatesan, V. Comparison of adipocyte-specific gene expression from WNIN/Ob mutant obese rats, lean control, and parental control. Mol. Cell. Biochem., 2011, 357(1-2), 217-225.
[4]
Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr; Spertus, J.A.; Costa, F.; Smith, S.C., Jr; Spertus, J.A. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 2005, 112(17), 2735-2752.
[5]
Grundy, S.M. Metabolic syndrome: a multiplex cardiovascular risk factor. J. Clin. Endocrinol. Metab., 2007, 92(2), 399-404.
[6]
Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular consequences of metabolic syndrome. Transl. Res., 2017, 183, 57-70.
[7]
Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract., 2014, 2014943162.
[8]
Speakman, J.; Hambly, C.; Mitchell, S.; Król, E. Animal models of obesity. Obes. Rev., 2007, 8(Suppl. 1), 55-61.
[9]
Wong, S.K.; Chin, K-Y.; Suhaimi, F.H.; Fairus, A.; Ima-Nirwana, S. Animal models of metabolic syndrome: a review. Nutr. Metab. (Lond.), 2016, 13(1), 65.
[10]
Scroyen, I.; Hemmeryckx, B.; Lijnen, H.R. From mice to men--mouse models in obesity research: what can we learn? Thromb. Haemost., 2013, 110(4), 634-640.
[11]
Madsen, A.N.; Hansen, G.; Paulsen, S.J.; Lykkegaard, K.; Tang-Christensen, M.; Hansen, H.S.; Levin, B.E.; Larsen, P.J.; Knudsen, L.B.; Fosgerau, K.; Vrang, N. Long-term characterization of the diet-induced obese and diet-resistant rat model: A polygenetic rat model mimicking the human obesity syndrome. J. Endocrinol., 2010, 206(3), 287-296.
[12]
Lobley, G.E.; Bremner, D.M.; Holtrop, G.; Johnstone, A.M.; Maloney, C. Impact of high-protein diets with either moderate or low carbohydrate on weight loss, body composition, blood pressure and glucose tolerance in rats. Br. J. Nutr., 2007, 97(6), 1099-1108.
[13]
Miesel, A.; Müller, H.; Thermann, M.; Heidbreder, M.; Dominiak, P.; Raasch, W. Overfeeding-induced obesity in spontaneously hypertensive rats: an animal model of the human metabolic syndrome. Ann. Nutr. Metab., 2010, 56(2), 127-142.
[14]
Vickers, S.P.; Jackson, H.C.; Cheetham, S.C. The utility of animal models to evaluate novel anti-obesity agents. Br. J. Pharmacol., 2011, 164(4), 1248-1262.
[15]
Buettner, R.; Parhofer, K.G.; Woenckhaus, M.; Wrede, C.E.; Kunz-Schughart, L.A.; Schölmerich, J.; Bollheimer, L.C. Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. J. Mol. Endocrinol., 2006, 36(3), 485-501.
[16]
Srinivasan, K.; Ramarao, P. Animal models in type 2 diabetes research: an overview. Indian J. Med. Res., 2007, 125(3), 451-472.
[17]
Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; Schoonjans, K.; Bianco, A.C.; Auwerx, J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075), 484-489.
[18]
Zhang, Y.; Guo, K.; LeBlanc, R.E.; Loh, D.; Schwartz, G.J.; Yu, Y.H. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes, 2007, 56(6), 1647-1654.
[19]
Noguchi, Y.; Nishikata, N.; Shikata, N.; Kimura, Y.; Aleman, J.O.; Young, J.D.; Koyama, N.; Kelleher, J.K.; Takahashi, M.; Stephanopoulos, G. Ketogenic essential amino acids modulate lipid synthetic pathways and prevent hepatic steatosis in mice. PLoS One, 2010, 5(8), e12057.
[20]
Bultman, S.J.; Michaud, E.J.; Woychik, R.P. Molecular characterization of the mouse agouti locus. Cell, 1992, 71(7), 1195-1204.
[21]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[22]
Chen, H.; Charlat, O.; Tartaglia, L.A.; Woolf, E.A.; Weng, X.; Ellis, S.J.; Lakey, N.D.; Culpepper, J.; Moore, K.J.; Breitbart, R.E.; Duyk, G.M.; Tepper, R.I.; Morgenstern, J.P. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell, 1996, 84(3), 491-495.
[23]
Cefalu, W.T. Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J., 2006, 47(3), 186-198.
[24]
Kanasaki, K.; Koya, D. Biology of obesity: Lessons from animal models of obesity. J. Biomed. Biotechnol., 2011, 2011197636.
[25]
Lutz, T.A.; Woods, S.C. Overview of animal models of obesity.
Curr. Protoc. Pharmacol.,2018, Chapter 5, Unit 5.6.1.
[26]
Singh, H.; Ajumeera, R.; Malakapalli, V.; Chalasani, M.; Pothani, S.; Venkatesan, V. WNIN mutant obese rats develop acute pancreatitis with the enhanced inflammatory milieu. Cell. Mol. Med. Res., 2017, 1(1), 20-31.
[27]
Harishankar, N.; Kumar, P.U.; Sesikeran, B.; Giridharan, N. Obesity associated pathophysiological & histological changes in WNIN obese mutant rats. Indian J. Med. Res., 2011, 134, 330-340.
[28]
Barrett, P.; Mercer, J.G.; Morgan, P.J. Preclinical models for obesity research. Dis. Model. Mech., 2016, 9(11), 1245-1255.
[29]
Beltrán-Sánchez, H.; Harhay, M.O.; Harhay, M.M.; McElligott, S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. J. Am. Coll. Cardiol., 2013, 62(8), 697-703.
[30]
Pandit, K.; Goswami, S.; Ghosh, S.; Mukhopadhyay, P.; Chowdhury, S. Metabolic syndrome in South Asians. Indian J. Endocrinol. Metab., 2012, 16(1), 44-55.
[31]
Alhassan, S.; Kiazand, A.; Balise, R.R.; King, A.C.; Reaven, G.M.; Gardner, C.D. Metabolic syndrome: do clinical criteria identify similar individuals among overweight premenopausal women? Metabolism, 2008, 57(1), 49-56.
[32]
Khristich, T.N.; Kendzerskaia, T.B. [Pancreas at metabolic syndrome]. Eksp. Klin. Gastroenterol., 2010, (8), 83-91.
[33]
Puddu, A.; Sanguineti, R.; Mach, F.; Dallegri, F.; Viviani, G.L.; Montecucco, F. Update on the protective molecular pathways improving pancreatic beta-cell dysfunction. Mediators Inflamm., 2013, 2013750540.
[34]
Maedler, K.; Sergeev, P.; Ris, F.; Oberholzer, J.; Joller-Jemelka, H.I.; Spinas, G.A.; Kaiser, N.; Halban, P.A.; Donath, M.Y. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest., 2002, 110(6), 851-860.
[35]
Böni-Schnetzler, M.; Thorne, J.; Parnaud, G.; Marselli, L.; Ehses, J.A.; Kerr-Conte, J.; Pattou, F.; Halban, P.A.; Weir, G.C.; Donath, M.Y. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β -cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab., 2008, 93(10), 4065-4074.
[36]
Donath, M.Y.; Dalmas, É.; Sauter, N.S.; Böni-Schnetzler, M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab., 2013, 17(6), 860-872.
[37]
Keller, M.P.; Attie, A.D. Physiological insights gained from gene expression analysis in obesity and diabetes. Annu. Rev. Nutr., 2010, 30, 341-364.
[38]
Singh, H.; Parthasarathy, V.; Farouk, M.; Venkatesan, V. Progenitor cells may aid successful islet compensation in metabolically healthy obese individuals. Med. Hypotheses, 2016, 86, 97-99.
[39]
Keller, M.P.; Choi, Y.; Wang, P.; Davis, D.B.; Rabaglia, M.E.; Oler, A.T.; Stapleton, D.S.; Argmann, C.; Schueler, K.L.; Edwards, S.; Steinberg, H.A.; Chaibub Neto, E.; Kleinhanz, R.; Turner, S.; Hellerstein, M.K.; Schadt, E.E.; Yandell, B.S.; Kendziorski, C.; Attie, A.D. A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res., 2008, 18(5), 706-716.
[40]
Singh, H.; Giridharan, N.; Bhonde, R.; Venkatesan, V. Deriving at candidate genes of metabolic stress from pancreas of WNIN/GR-Ob mutant rats. Islets, 2013, 5(4), 133-138.
[41]
Singh, H.; Ganneru, S.; Malakapalli, V.; Chalasani, M.; Nappanveettil, G.; Bhonde, R.R.; Venkatesan, V. Islet adaptation to obesity and insulin resistance in WNIN/GR-Ob rats. Islets, 2014, 6(5-6), e998099.
[42]
Prentki, M.; Nolan, C.J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest., 2006, 116(7), 1802-1812.
[43]
Singh, H.; Venkatesan, V. Treatment of ‘diabesity’: Beyond pharmacotherapy. Curr. Drug Targets, 2018, 19(14), 1672-1682.
[44]
Bansal, V.S.; Raja, C.P.; Venkataraman, K.; Vijayalakshmi, M.A. Genes involved in pancreatic islet cell rejuvenation. Indian J. Med. Res., 2013, 137(4), 695-703.
[45]
Singh, H.; Venkatesan, V. Beta-cell management in type 2 diabetes: beneficial role of nutraceuticals. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(2), 89-98.
[46]
Pereda, J.; Pérez, S.; Escobar, J.; Arduini, A.; Asensi, M.; Serviddio, G.; Sabater, L.; Aparisi, L.; Sastre, J. Obese rats exhibit high levels of fat necrosis and isoprostanes in taurocholate-induced acute pancreatitis. PLoS One, 2012, 7(9), e44383.
[47]
Grundy, S.M. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur. J. Clin. Invest., 2015, 45(11), 1209-1217.
[48]
Lefebvre, A.M.; Laville, M.; Vega, N.; Riou, J.P.; van Gaal, L.; Auwerx, J.; Vidal, H. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes, 1998, 47(1), 98-103.
[49]
Sarjeant, K.; Stephens, J.M. Adipogenesis. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a008417.
[50]
Rosen, E.D.; MacDougald, O.A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol., 2006, 7(12), 885-896.
[51]
Hammad, S.S.; Jones, P.J. Dietary fatty acid composition modulates obesity and interacts with obesity-related genes. Lipids, 2017, 52(10), 803-822.
[52]
Schwartz, M.W.; Porte, D. Jr Diabetes, obesity, and the brain. Science, 2005, 307(5708), 375-379.
[53]
Raji, C.A.; Ho, A.J.; Parikshak, N.N.; Becker, J.T.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Leow, A.D.; Toga, A.W.; Thompson, P.M. Brain structure and obesity. Hum. Brain Mapp., 2010, 31(3), 353-364.
[54]
Sinha, J.K.; Ghosh, S.; Swain, U.; Giridharan, N.V.; Raghunath, M. Increased macromolecular damage due to oxidative stress in the neocortex and hippocampus of WNIN/Ob, a novel rat model of premature aging. Neuroscience, 2014, 269, 256-264.
[55]
Reddy, S.S.; Shruthi, K.; Reddy, V.S.; Raghu, G.; Suryanarayana, P.; Giridharan, N.V.; Reddy, G.B. Altered ubiquitin-proteasome system leads to neuronal cell death in a spontaneous obese rat model. Biochim. Biophys. Acta, 2014, 1840(9), 2924-2934.
[56]
Froy, O. Circadian rhythms and obesity in mammals. ISRN Obes., 2012, 2012437198.
[57]
Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E.; Laposky, A.; Losee-Olson, S.; Easton, A.; Jensen, D.R.; Eckel, R.H.; Takahashi, J.S.; Bass, J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005, 308(5724), 1043-1045.
[58]
Grundy, S.M. Metabolic syndrome: Connecting and reconciling cardiovascular and diabetes worlds. J. Am. Coll. Cardiol., 2006, 47(6), 1093-1100.
[59]
Ebong, I.A.; Goff, D.C., Jr; Rodriguez, C.J.; Chen, H.; Bertoni, A.G. Mechanisms of heart failure in obesity. Obes. Res. Clin. Pract., 2014, 8(6), e540-e548.
[60]
Bugger, H.; Abel, E.D. Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin. Sci. (Lond.), 2008, 114(3), 195-210.
[61]
Laskowski, K.R.; Russell, R.R., III Uncoupling proteins in heart failure. Curr. Heart Fail. Rep., 2008, 5(2), 75-79.
[62]
Kozak, L.P.; Anunciado-Koza, R. UCP1: Its involvement and utility in obesity. Int. J. Obes., 2008, 32(Suppl. 7), S32-S38.
[63]
Bae, M-S.; Han, J-H.; Kim, J-H.; Kim, Y-J.; Lee, K-J.; Kwon, K-Y. The relationship between metabolic syndrome and pulmonary function. Korean J. Fam. Med., 2012, 33(2), 70-78.
[64]
Baffi, C.W.; Wood, L.; Winnica, D.; Strollo, P.J., Jr; Gladwin, M.T.; Que, L.G.; Holguin, F. Metabolic syndrome and the lung. Chest, 2016, 149(6), 1525-1534.
[65]
Singh, S.; Prakash, Y.S.; Linneberg, A.; Agrawal, A. Insulin and the lung: connecting asthma and metabolic syndrome. J. Allergy (Cairo), 2013, 2013627384.
[66]
Kwak, H.J.; Park, D.W.; Seo, J.Y.; Moon, J.Y.; Kim, T.H.; Sohn, J.W.; Shin, D.H.; Yoon, H.J.; Park, S.S.; Kim, S.H. The Wnt/β-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Exp. Mol. Med., 2015, 47(12), e198.
[67]
Caplan, A.I.; Bruder, S.P. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol. Med., 2001, 7(6), 259-264.
[68]
Drewa, T.; Joachimiak, R.; Kaznica, A.; Flisinski, M.; Brymora, A.; Manitius, J. Bone marrow progenitors from animals with chronic renal failure lack capacity of in vitro proliferation. Transplant. Proc., 2008, 40(5), 1668-1673.
[69]
Wang, J.; Xiao, Z. Mesenchymal stem cells in pathogenesis of myelodysplastic syndromes. Stem Cell Investig., 2014, 1(8), 16-19.
[70]
Garayoa, M.; Garcia, J.L.; Santamaria, C.; Garcia-Gomez, A.; Blanco, J.F.; Pandiella, A.; Hernández, J.M.; Sanchez-Guijo, F.M.; del Cañizo, M-C.; Gutiérrez, N.C.; San Miguel, J.F. Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia, 2009, 23(8), 1515-1527.
[71]
Geyh, S.; Rodríguez-Paredes, M.; Jäger, P.; Khandanpour, C.; Cadeddu, R-P.; Gutekunst, J.; Wilk, C.M.; Fenk, R.; Zilkens, C.; Hermsen, D.; Germing, U.; Kobbe, G.; Lyko, F.; Haas, R.; Schroeder, T. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 2016, 30(3), 683-691.
[72]
Kastrinaki, M-C.; Sidiropoulos, P.; Roche, S.; Ringe, J.; Lehmann, S.; Kritikos, H.; Vlahava, V-M.; Delorme, B.; Eliopoulos, G.D.; Jorgensen, C.; Charbord, P.; Häupl, T.; Boumpas, D.T.; Papadaki, H.A. Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis. Ann. Rheum. Dis., 2008, 67(6), 741-749.
[73]
Fu, M-H.; Li, C-L.; Lin, H-L.; Chen, P-C.; Calkins, M.J.; Chang, Y-F.; Cheng, P-H.; Yang, S-H. Stem cell transplantation therapy in Parkinson’s disease. Springerplus, 2015, 4(1), 597.
[74]
Coe, L.M.; Irwin, R.; Lippner, D.; McCabe, L.R. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J. Cell. Physiol., 2011, 226(2), 477-483.
[75]
Phadnis, S.M.; Ghaskadbi, S.M.; Hardikar, A.A.; Bhonde, R.R. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. Rev. Diabet. Stud., 2009, 6(4), 260-270.
[76]
Guan, C-C.; Yan, M.; Jiang, X-Q.; Zhang, P.; Zhang, X-L.; Li, J.; Ye, D-X.; Zhang, F-Q. Sonic hedgehog alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of bone marrow stromal cells. Bone, 2009, 45(6), 1146-1152.
[77]
Luo, J-D.; Hu, T-P.; Wang, L.; Chen, M-S.; Liu, S-M.; Chen, A.F. Sonic hedgehog improves delayed wound healing via enhancing cutaneous nitric oxide function in diabetes. Am. J. Physiol. Endocrinol. Metab., 2009, 297(2), E525-E531.
[78]
Thomas, M.K.; Rastalsky, N.; Lee, J.H.; Habener, J.F. Hedgehog signaling regulation of insulin production by pancreatic beta-cells. Diabetes, 2000, 49(12), 2039-2047.
[79]
Dashti, M.; Peppelenbosch, M.P.; Rezaee, F. Hedgehog signalling as an antagonist of ageing and its associated diseases. BioEssays, 2012, 34(10), 849-856.
[80]
Kanda, S.; Mochizuki, Y.; Suematsu, T.; Miyata, Y.; Nomata, K.; Kanetake, H. Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J. Biol. Chem., 2003, 278(10), 8244-8249.
[81]
Paulis, L.; Fauconnier, J.; Cazorla, O.; Thireau, J.; Soleti, R.; Vidal, B.; Ouillé, A.; Bartholome, M.; Bideaux, P.; Roubille, F.; Le Guennec, J.Y.; Andriantsitohaina, R.; Martínez, M.C.; Lacampagne, A. Activation of Sonic hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Sci. Rep., 2015, 5(1), 7983.
[82]
Matsushita, K.; Dzau, V.J. Mesenchymal stem cells in obesity: Insights for translational applications. Lab. Invest., 2017, 97(10), 1158-1166.
[83]
Almalki, S.G.; Agrawal, D.K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation, 2016, 92(1-2), 41-51.
[84]
Godisela, K.K.; Reddy, S.S.; Kumar, C.U.; Saravanan, N.; Reddy, P.Y.; Jablonski, M.M.; Ayyagari, R.; Reddy, G.B. Impact of obesity with impaired glucose tolerance on retinal degeneration in a rat model of metabolic syndrome. Mol. Vis., 2017, 23, 263-274.
[85]
Reddy, P.Y.; Giridharan, N.V.; Reddy, G.B. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats. Mol. Vis., 2012, 18, 495-503.
[86]
Shin, D. Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: results of a national survey. J. Clin. Endocrinol. Metab., 2014, 99(9), 3177-3183.
[87]
Vincent, H.K.; Heywood, K.; Connelly, J.; Hurley, R.W. Obesity and weight loss in the treatment and prevention of osteoarthritis. PM R, 2012, 4(Suppl. 5), S59-S67.
[88]
King, L.K.; March, L.; Anandacoomarasamy, A. Obesity & osteoarthritis. Indian J. Med. Res., 2013, 138(2), 185-193.
[89]
Blanco, F.J.; Rego, I.; Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol., 2011, 7(3), 161-169.
[90]
Zhuo, Q.; Yang, W.; Chen, J.; Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol., 2012, 8(12), 729-737.
[91]
Deng, C.; Bianchi, A.; Presle, N.; Moulin, D.; Koufany, M.; Guillaume, C.; Kempf, H.; Pizard, A. Eplerenone treatment alleviates the development of joint lesions in a new rat model of spontaneous metabolic-associated osteoarthritis. Ann. Rheum. Dis., 2018, 77(2), 315-316.