[1]
Manchikanti, L. Prescription drug abuse: what is being done to address this new drug epidemic? Testimony before the Subcommittee on Criminal Justice, Drug Policy and Human Resources. Pain Physician, 2006, 9, 287-321.
[2]
United Nations Office of Drugs and Crime World Drug report 2010, no. ISBN 978-92-1.
[3]
Van Etten, M.L.; Anthony, J.C. Comparative epidemiology of initial drug opportunities and transitions to first use: marijuana, cocaine, hallucinogens and heroin. Drug Alcohol Depend., 1999, 54, 117-125.
[4]
Vsevolozhskaya, O.A.; Anthony, J.C. Transitioning from first drug use to dependence onset: Illustration of a multiparametric approach for comparative epidemiology. Neuropsychopharmacology, 2016, 41, 869-876.
[5]
Dick, D.M.; Riley, B.; Kendler, K.S. Nature and nurture in neuropsychiatric genetics: Where do we stand? Dialogues Clin. Neurosci., 2010, 12, 7-23.
[6]
Bubier, J.A.; Jay, J.J.; Baker, C.L.; Bergeson, S.E.; Ohno, H.; Metten, P.; Crabbe, J.C.; Chesler, E.J. Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics. Genetics, 2014, 197, 1377-1393.
[7]
Ciccocioppo, R. Genetically selected alcohol preferring rats to model human alcoholism. Curr. Top. Behav. Neurosci., 2013, 13, 251-269.
[8]
Crabbe, J.C.; Wahlsten, D.; Dudek, B.C. Genetics of mouse behavior: interactions with laboratory environment. Science, 1999, 284, 1670-1672.
[9]
Rubinstein, M.; Phillips, T.J.; Bunzow, J.R.; Falzone, T.L.; Dziewczapolski, G.; Zhang, G.; Fang, Y.; Larson, J.L.; McDougall, J.A.; Chester, J.A.; Saez, C.; Pugsley, T.A.; Gershanik, O.; Low, M.J.; Grandy, D.K. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell, 1997, 90, 991-1001.
[10]
Zhou, Z.; Karlsson, C.; Liang, T.; Xiong, W.; Kimura, M.; Tapocik, J.D.; Yuan, Q.; Barbier, E.; Feng, A.; Flanigan, M.; Augier, E.; Enoch, M.A.; Hodgkinson, C.A.; Shen, P.H.; Lovinger, D.M.; Edenberg, H.J.; Heilig, M.; Goldman, D. Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proc. Natl. Acad. Sci. USA, 2013, 110, 16963-16968.
[11]
Enoch, M.A. The influence of gene-environment interactions on the development of alcoholism and drug dependence. Curr. Psychiatry Rep., 2012, 14, 150-158.
[12]
Lopez-Quintero, C.; Pérez de los Cobos, J.; Hasin, D.S.; Okuda, M.; Wang, S.; Grant, B.F.; Blanco, C. Probability and predictors of transition from first use to dependence on nicotine, alcohol, cannabis, and cocaine: results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Drug Alcohol Depend., 2011, 115, 120-130.
[13]
Kendler, K.S.; Chen, X.; Dick, D.; Maes, H.; Gillespie, N.; Neale, M.C.; Riley, B. Recent advances in the genetic epidemiology and molecular genetics of substance use disorders. Nat. Neurosci., 2012, 15, 181-189.
[14]
Belin, D.; Mar, A.C.; Dalley, J.W.; Robbins, T.W.; Everitt, B.J. High impulsivity predicts the switch to compulsive cocaine-taking. Sci., 2008, 320, 1352-1355.
[15]
Kendler, K.S.; Prescott, C.A.; Neale, M.C.; Pedersen, N.L. Temperance board registration for alcohol abuse in a national sample of Swedish male twins, born 1902 to 1949. Arch. Gen. Psychiatry, 1997, 54, 178-184.
[16]
Tarter, R.E.; Kirisci, L.; Mezzich, A.; Cornelius, J.R.; Pajer, K.; Vanyukov, M.; Gardner, W.; Blackson, T.; Clark, D. Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. Am. J. Psychiatry, 2003, 160, 1078-1085.
[17]
de Wit, H.; Phillips, T.J. Do initial responses to drugs predict future use or abuse? Neurosci. Biobehav. Rev., 2012, 36, 1565-1576.
[18]
Connor, T.J.; McNamara, M.G.; Finn, D.; Currid, A.; O’Malley, M.; Redmond, A.M.; Kelly, J.P.; Leonard, B.E. Acute 3,4-methylenedioxymethamphetamine(MDMA) administration produces a rapid and sustained suppression of immune function in the rat. Immunopharmacology, 1998, 38, 253-260.
[19]
Connor, T.J.; Connelly, D.B.; Kelly, J.P. Methylenedioxymethamphetamine (MDMA; ‘Ecstasy’) suppresses antigen specific IgG2a and IFN-gamma production. Immunol. Lett., 2001, 78, 67-73.
[20]
Connor, T.J.; O’Shaughnessid Kelly, J.P. Methylenedioxymethamphetamine “MDMA”; Ecstasy suppress neutrophil phagocyosis. Fundam. Clin. Pharmacol., 2004, 18(S1), 90.
[21]
de Paula, V.F.; Ribeiro, A.; Pinheiro, M.L.; Sakai, M.; Lacava, M.C.; Lapachinske, S.F.; Moreau, R.L.; Palermo-Neto, J. Methylenedioxymethamphetamine (Ecstasy) decreases neutrophil activity and alters leukocyte distribution in bone marrow, spleen and blood. Neuroimmunomodulation, 2009, 16, 191-200.
[22]
Camarasa, J.; Ros, C.; Pubill, D.; Escubedo, E. Tumour necrosis factor alpha suppression by MDMA is mediated by peripheral heteromeric nicotinic receptors. Immunopharmacol. Immunotoxicol., 2010, 32, 265-271.
[23]
Connor, T.J.; Harkin, A.; Kelly, J.P. Methylenedioxymethamphetamine suppresses production of the proinflammatory cytokine tumor necrosis factor-alpha independent of a beta-adrenoceptor-mediated increase in interleukin-10. J. Pharmacol. Exp. Ther., 2005, 312, 134-143.
[24]
Boyle, N.T.; Connor, T.J. MDMA (“Ecstasy”) suppresses the innate IFN-gamma response in vivo: A critical role for the anti-inflammatory cytokine IL-10. Eur. J. Pharmacol., 2007, 572, 228-238.
[25]
Boyle, N.T.; Connor, T.J. Methylenedioxymethamphetamine (‘Ecstasy’)-induced immunosuppression: a cause for concern? Br. J. Pharmacol., 2010, 161, 17-32.
[26]
Pacifici, R.; Zuccaro, P.; Farré, M.; Pichini, S.; Di Carlo, S.; Roset, P.N.; Ortuño, J.; Segura, J.; de la Torre, R. Immunomodulating properties of MDMA alone and in combination with alcohol: a pilot study. Life Sci., 1999, 65, PL309-PL316.
[27]
Pacifici, R.; Zuccaro, P.; Hernandez López, C.; Pichini, S.; Di Carlo, S.; Farré, M.; Roset, P.N.; Ortuño, J.; Segura, J.; Torre, R.L. Acute effects of 3,4-methylenedioxymethamphetamine alone and in combination with ethanol on the immune system in humans. J. Pharmacol. Exp. Ther., 2001, 296, 207-215.
[28]
Leweke, F.M.; Giuffrida, A.; Koethe, D.; Schreiber, D.; Nolden, B.M.; Kranaster, L.; Neatby, M.A.; Schneider, M.; Gerth, C.W.; Hellmich, M.; Klosterkötter, J.; Piomelli, D. Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: Impact of cannabis use. Schizophr. Res., 2007, 94, 29-36.
[29]
Eisenstein, T.K.; Meissler, J.J.; Wilson, Q.; Gaughan, J.P.; Adler, M.W. Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J. Neuroimmunol., 2007, 189, 17-22.
[30]
Lombard, C.; Hegde, V.L.; Nagarkatti, M.; Nagarkatti, P.S. Perinatal exposure to Δ9-tetrahydrocannabinol triggers profound defects in T cell differentiation and function in fetal and postnatal stages of life, including decreased responsiveness to HIV antigens. J. Pharmacol. Exp. Ther., 2011, 339, 607-617.
[31]
McKallip, R.J.; Nagarkatti, M.; Nagarkatti, P.S. Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. J. Immunol., 2005, 174, 3281-3289.
[32]
Newton, C.A.; Lu, T.; Nazian, S.J.; Perkins, I.; Friedman, H.; Klein, T.W. The THC-induced suppression of Th1 polarization in response to Legionella pneumophila infection is not mediated by increases in corticosterone and PGE2. J. Leukoc. Biol., 2004, 76, 854-861.
[33]
Newton, C.A.; Chou, P.J.; Perkins, I.; Klein, T.W. CB(1) and CB(2) cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J. Neuroimmune Pharmacol., 2009, 4, 92-102.
[34]
Roth, M.D.; Tashkin, D.P.; Whittaker, K.M.; Choi, R.; Baldwin, G.C. Tetrahydrocannabinol suppresses immune function and enhances HIV replication in the huPBL-SCID mouse. Life Sci., 2005, 77, 1711-1722.
[35]
Lu, H.; Kaplan, B.L.; Ngaotepprutaram, T.; Kaminski, N.E. Suppression of T cell costimulator ICOS by Delta9-tetrahydrocannabinol. J. Leukoc. Biol., 2009, 85, 322-329.
[36]
Arevalo-Martin, A.; Molina-Holgado, E.; Guaza, C.A. CB1/CB2 receptor agonist, WIN 55,212-2, exerts its therapeutic effect in a viral autoimmune model of multiple sclerosis by restoring self-tolerance to myelin. Neuropharmacology, 2012, 63, 385-393.
[37]
Pandey, R.; Hegde, V.L.; Nagarkatti, M.; Nagarkatti, P.S. Targeting cannabinoid receptors as a novel approach in the treatment of graft-versus-host disease: evidence from an experimental murine model. J. Pharmacol. Exp. Ther., 2011, 338, 819-828.
[38]
Croxford, J.L.; Wang, K.; Miller, S.D.; Engman, D.M.; Tyler, K.M. Effects of cannabinoid treatment on Chagas disease pathogenesis: balancing inhibition of parasite invasion and immunosuppression. Cell. Microbiol., 2005, 7, 1592-1602.
[39]
Hegde, V.L.; Hegde, S.; Cravatt, B.F.; Hofseth, L.J.; Nagarkatti, M.; Nagarkatti, P.S. Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: involvement of regulatory T cells. Mol. Pharmacol., 2008, 74, 20-33.
[40]
Xu, H.; Cheng, C.L.; Chen, M.; Manivannan, A.; Cabay, L.; Pertwee, R.G.; Coutts, A.; Forrester, J.V. Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis. J. Leukoc. Biol., 2007, 82, 532-541.
[41]
Servettaz, A.; Kavian, N.; Nicco, C.; Deveaux, V.; Chéreau, C.; Wang, A.; Zimmer, A.; Lotersztajn, S.; Weill, B.; Batteux, F. Targeting the cannabinoid pathway limits the development of fibrosis and autoimmunity in a mouse model of systemic sclerosis. Am. J. Pathol., 2010, 177, 187-196.
[42]
Buckley, N.E.; McCoy, K.L.; Mezey, E.; Bonner, T.; Zimmer, A.; Felder, C.C.; Glass, M.; Zimmer, A. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur. J. Pharmacol., 2000, 396, 141-149.
[43]
Muppidi, J.R.; Arnon, T.I.; Bronevetsky, Y.; Veerapen, N.; Tanaka, M.; Besra, G.S.; Cyster, J.G. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. J. Exp. Med., 2011, 208, 1941-1948.
[44]
Springs, A.E.; Karmaus, P.W.; Crawford, R.B.; Kaplan, B.L.; Kaminski, N.E. Effects of targeted deletion of cannabinoid receptors CB1 and CB2 on immune competence and sensitivity to immune modulation by Delta9-tetrahydrocannabinol. J. Leukoc. Biol., 2008, 84, 1574-1584.
[45]
Agudelo, M.; Newton, C.; Widen, R.; Sherwood, T.; Nong, L.; Friedman, H.; Klein, T.W. Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murine-purified B lymphocytes. J. Neuroimmune Pharmacol., 2008, 3, 35-42.
[46]
El-Gohary, M.; Eid, M.A. Effect of cannabinoid ingestion (in the form of bhang) on the immune system of high school and university students. Hum. Exp. Toxicol., 2004, 23, 149-156.
[47]
Mao, J.T.; Huang, M.; Wang, J.; Sharma, S.; Tashkin, D.P.; Dubinett, S.M. Cocaine down-regulates IL-2-induced peripheral blood lymphocyte IL-8 and IFN-gamma production. Cell. Immunol., 1996, 172, 217-223.
[48]
Gan, X.; Zhang, L.; Newton, T.; Chang, S.L.; Ling, W.; Kermani, V.; Berger, O.; Graves, M.C.; Fiala, M. Cocaine infusion increases interferon-gamma and decreases interleukin-10 in cocaine-dependent subjects. Clin. Immunol. Immunopathol., 1998, 89, 181-190.
[49]
Irwin, M.R.; Olmos, L.; Wang, M.; Valladares, E.M.; Motivala, S.J.; Fong, T.; Newton, T.; Butch, A.; Olmstead, R.; Cole, S.W. Cocaine dependence and acute cocaine induce decreases of monocyte proinflammatory cytokine expression across the diurnal period: autonomic mechanisms. J. Pharmacol. Exp. Ther., 2007, 320, 507-515.
[50]
Halpern, J.H.; Sholar, M.B.; Glowacki, J.; Mello, N.K.; Mendelson, J.H.; Siegel, A.J. Diminished interleukin-6 response to proinflammatory challenge in men and women after intravenous cocaine administration. J. Clin. Endocrinol. Metab., 2003, 88, 1188-1193.
[51]
Maza-Quiroga, R.; García-Marchena, N.; Romero-Sanchiz, P.; Barrios, V.; Pedraz, M.; Serrano, A.; Nogueira-Arjona, R.; Ruiz, J.J.; Soria, M.; Campos, R.; Chowen, J.A.; Argente, J.; Torrens, M.; López-Gallardo, M.; Marco, E.M.; Rodríguez de Fonseca, F.; Pavón, F.J.; Araos, P. Evaluation of plasma cytokines in patients with cocaine use disorders in abstinence identifies transforming growth factor alpha (TGFα) as a potential biomarker of consumption and dual diagnosis. PeerJ, 2017, 5, e3926.
[52]
Vannacci, A.; Giannini, L.; Passani, M.B.; Di Felice, A.; Pierpaoli, S.; Zagli, G.; Fantappiè, O.; Mazzanti, R.; Masini, E.; Mannaioni, P.F. The endocannabinoid 2-arachidonylglycerol decreases the immunological activation of Guinea pig mast cells: involvement of nitric oxide and eicosanoids. J. Pharmacol. Exp. Ther., 2004, 311, 256-264.
[53]
Melis, M.; Frau, R.; Kaliva, P.W.; Spencer, S.; Chioma, V.; Zamberletti, E.; Rubino, T.; Parolaro, D. New vistas on cannabis use disorder. Neuropharmacology, 2017, 124, 62-72.
[54]
Muller, N.; Ackeheil, M. Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1998, 22, 1-33.
[55]
Zalcman, S.; Green-Johnson, J.M.; Murray, L.; Nance, D.M.; Dyck, D.; Anisman, H.; Greenberg, A.H. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res., 1994, 643, 40-49.
[56]
DeLisi, L.E. The significance of age of onset for schizophrenia. Schizophr. Bull., 1992, 18, 209-215.
[57]
Borovcanin, M.; Jovanovic, I.; Radosavljevic, G.; Djukic Dejanovic, S.; Bankovic, D.; Arsenijevic, N.; Lukic, M.L. Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. J. Psychiatr. Res., 2012, 46, 1421-1426.
[58]
Crespo-Facorro, B.; Carrasco-Marín, E.; Pérez-Iglesias, R.; Pelayo-Terán, J.M.; Fernandez-Prieto, L.; Leyva-Cobián, F.; Vázquez-Barquero, J.L. Interleukin-12 plasma levels in drug-naïve patients with a first episode of psychosis: effects of antipsychotic drugs. Psychiatry Res., 2008, 158, 206-216.
[59]
Müller, N.; Riedel, M.; Ackenheil, M.; Schwarz, M.J. Cellular and humoral immune system in schizophrenia: A conceptual re-evaluation. World J. Biol. Psychiatry, 2000, 1, 173-179.
[60]
Suárez-Pinilla, P.; López-Gil, J.; Crespo-Facorro, B. Immune system: a possible nexus between cannabinoids and psychosis. Brain Behav. Immun., 2014, 40, 269-282.
[61]
Gan, X.; Zhang, L.; Berger, O.; Stins, M.F.; Way, D.; Taub, D.D.; Chang, S.L.; Kim, K.S.; House, S.D.; Weinand, M.; Witte, M.; Graves, M.C.; Fiala, M. Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin. Immunol., 1999, 91, 68-76.
[62]
Yao, H.; Yang, Y.; Kim, K.J.; Bethel-Brown, C.; Gong, N.; Funa, K.; Gendelman, H.E.; Su, T.P.; Wang, J.Q.; Buch, S. Molecular mechanisms involving sigma receptor-mediated induction of MCP-1: Implication for increased monocyte transmigration. Blood, 2010, 115, 4951-4962.
[63]
Freire-Garabal, M.; Balboa, J.L.; Núñez, M.J.; Castaño, M.T.; Llovo, J.B.; Fernández-Rial, J.C.; Belmonte, A. Effects of amphetamine on T-cell immune response in mice. Life Sci., 1991, 49(16), PL107-PL112.
[64]
Núñez, M.J.; Fernández-Rial, J.C.; Couceiro, J.; Suárez, J.A.; Gómez-Fernández, D.E.; Rey-Méndez, M.; Freire-Garabal, M. Effects of amphetamine on influenza virus infection in mice. Life Sci., 1993, 52(10), PL73-PL78.
[65]
Hernández-Cervantes, R.; Méndez-Dìaz, M.; Prospéro-Garcia, O.; Morales-Montor, J. immunoregulatory role of cannabinoids during infectious disease. Neuroimmunomodulation, 2017, 24, 183-199.
[66]
Pacifici, R.; Zuccaro, P.; Farré, M.; Poudevida, S.; Abanades, S.; Pichini, S.; Langohr, K.; Segura, J.; de la Torre, R. Combined immunomodulating properties of 3,4-methylenedioxymethamphetamine (MDMA) and cannabis in humans. Addiction, 2007, 102, 931-936.
[67]
Parrott, A.C.; Buchanan, T.; Scholey, A.B.; Heffernan, T.; Ling, J.; Rodgers, J. Ecstasy/MDMA attributed problems reported by novice, moderate and heavy recreational users. Hum. Psychopharmacol., 2002, 17, 309-312.
[68]
Jeynes, K.D.; Gibson, E.L. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend., 2017, 179, 229-239.
[69]
Varela, P.; Marcos, A.; Ripoll, S.; Santacruz, I.; Requejo, A.M. Effects of human immunodeficiency virus infection and detoxification time on anthropometric measurements and dietary intake of male drug addicts. Am. J. Clin. Nutr., 1997, 66, 509S-514S.
[70]
Sukop, P.H.; Kessler, F.H.; Valerio, A.G.; Escobar, M.; Castro, M.; Diemen, L.V. Wernicke’s encephalopathy in crack-cocaine addiction. Med. Hypotheses, 2016, 89, 68-71.
[71]
Neale, J.; Nettleton, S.; Pickering, L.; Fisher, J. Eating patterns among heroin users: a qualitative study with implications for nutritional interventions. Addiction, 2012, 107, 635-641.
[72]
White, R. Drugs and nutrition: how side effects can influence nutritional intake. Proc. Nutr. Soc., 2010, 69, 558-564.
[73]
Magrone, T.; Perez de Heredia, F.; Jirillo, E.; Morabito, G.; Marcos, A.; Serafini, M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol., 2013, 91, 387-396.
[74]
Magrone, T.; Jirillo, E. disorders of innate immunity in human ageing and effects of nutraceutical administration. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14, 272-282.
[75]
Magrone, T.; Spagnoletta, A.; Salvatore, R.; Magrone, M.; Dentamaro, F.; Russo, M.A.; Difonzo, G.; Summo, C.; Caponio, F.; Jirillo, E. Olive leaf extracts act as modulators of the human immune response. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18, 85-93.
[76]
Barbadoro, P.; Annino, I.; Ponzio, E.; Romanelli, R.M.; D’Errico, M.M.; Prospero, E.; Minelli, A. Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics. Mol. Nutr. Food Res., 2013, 57, 1110-1114.
[77]
Buydens-Branchey, L.; Branchey, M.; Hibbeln, J.R. Low plasma levels of docosahexaenoic acid are associated with an increased relapse vulnerability in substance abusers. Am. J. Addict., 2009, 18, 73-80.
[78]
McCarty, M.F. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med. Hypotheses, 2013, 80, 456-462.
[79]
Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology, 2010, 35, 217-238.
[80]
Deutch, A.Y. Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: Implications for schizophrenia and Parkinson’s disease. J. Neural. Transm. Gen. Sect., 1993, 91, 197-221.
[81]
Kauer, J.A. Learning mechanisms in addiction: Synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu. Rev. Physiol., 2004, 66, 447-475.
[82]
Jones, S.; Bonci, A. Synaptic plasticity and drug addiction. Curr. Opin. Pharmacol., 2005, 5, 20-25.
[83]
Lacagnina, M.J.; Rivera, P.D.; Bilbo, S.D. Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology, 2017, 42, 156-177.
[84]
Bachtell, R.K.; Jones, J.D.; Heinzerling, K.G.; Beardsley, P.M.; Comer, S.D. Glial and neuroinflammatory targets for treating substance use disorders. Drug Alcohol Depend., 2017, 180, 156-170.
[85]
Hutchinson, M.R.; Lewis, S.S.; Coats, B.D.; Rezvani, N.; Zhang, Y.; Wieseler, J.L.; Somogyi, A.A.; Yin, H.; Maier, S.F.; Rice, K.C.; Watkins, L.R. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience, 2010, 167, 880-893.
[86]
Schwarz, J.M.; Bilbo, S.D. Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction. J. Neurosci., 2013, 33, 961-971.
[87]
El-Hage, N.; Gurwell, J.A.; Singh, I.N.; Knapp, P.E.; Nath, A.; Hauser, K.F. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia, 2005, 50, 91-106.
[88]
El-Hage, N.; Wu, G.; Wang, J.; Ambati, J.; Knapp, P.E.; Reed, J.L.; Bruce-Keller, A.J.; Hauser, K.F. HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia, 2006, 53, 132-146.
[89]
Niwa, M.; Nitta, A.; Yamada, Y.; Nakajima, A.; Saito, K.; Seishima, M.; Noda, Y.; Nabeshima, T. Tumor necrosis factor-alpha and its inducer inhibit morphine-induced rewarding effects and sensitization. Biol. Psychiatry, 2007, 62, 658-668.
[90]
Sawaya, B.E.; Deshmane, S.L.; Mukerjee, R.; Fan, S.; Khalili, K. TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. J. Neuroimmune Pharmacol., 2009, 4, 140-149.
[91]
Hutchinson, M.R.; Northcutt, A.L.; Hiranita, T.; Wang, X.; Lewis, S.S.; Thomas, J.; van Steeg, K.; Kopajtic, T.A.; Loram, L.C.; Sfregola, C.; Galer, E.; Miles, N.E.; Bland, S.T.; Amat, J.; Rozeske, R.R.; Maslanik, T.; Chapman, T.R.; Strand, K.A.; Fleshner, M.; Bachtell, R.K.; Somogyi, A.A.; Yin, H.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Watkins, L.R. Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J. Neurosci., 2012, 32, 11187-11200.
[92]
Tanda, G.; Mereu, M.; Hiranita, T.; Quarterman, J.C.; Coggiano, M.; Katz, J.L. Lack of specific involvement of (+)-Naloxone and (+)-Naltrexone on the reinforcing and neurochemical effects of cocaine and opioids. Neuropsychopharmacology, 2016, 41, 2772-2781.
[93]
Hutchinson, M.R.; Northcutt, A.L.; Chao, L.W.; Kearney, J.J.; Zhang, Y.; Berkelhammer, D.L.; Loram, L.C.; Rozeske, R.R.; Bland, S.T.; Maier, S.F.; Gleeson, T.T.; Watkins, L.R. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav. Immun., 2008, 22, 1248-1256.
[94]
Bland, S.T.; Hutchinson, M.R.; Maier, S.F.; Watkins, L.R.; Johnson, K.W. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release. Brain Behav. Immun., 2009, 23, 492-497.
[95]
Eidson, L.N.; Inoue, K.; Young, L.J.; Tansey, M.G.; Murphy, A.Z. Toll-like receptor 4 mediates morphine-induced neuroinflammation and tolerance via soluble tumor necrosis factor signaling. Neuropsychopharmacology, 2017, 42, 661-670.
[96]
Ozawa, T.; Nakagawa, T.; Shige, K.; Minami, M.; Satoh, M. Changes in the expression of glial glutamate transporters in the rat brain accompanied with morphine dependence and naloxone-precipitated withdrawal. Brain Res., 2001, 905, 254-258.
[97]
Shen, H.W.; Scofield, M.D.; Boger, H.; Hensley, M.; Kalivas, P.W. Synaptic glutamate spillover due to impaired glutamate uptake mediates heroin relapse. J. Neurosci., 2014, 34, 5649-5657.
[98]
Nakagawa, T.; Fujio, M.; Ozawa, T.; Minami, M.; Satoh, M. Effect of MS-153, a glutamate transporter activator, on the conditioned rewarding effects of morphine, methamphetamine and cocaine in mice. Behav. Brain Res., 2005, 156, 233-239.
[99]
Rawls, S.M.; Zielinski, M.; Patel, H.; Sacavage, S.; Baron, D.A.; Patel, D. Beta-lactam antibiotic reduces morphine analgesic tolerance in rats through GLT-1 transporter activation. Drug Alcohol Depend., 2010, 107, 261-263.
[100]
Jastrzębska, J.; Frankowska, M.; Filip, M.; Atlas, D. N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology (Berl.), 2016, 233, 3437-3448.
[101]
Murray, J.E.; Everitt, B.J.; Belin, D. N-Acetylcysteine reduces early- and late-stage cocaine seeking without affecting cocaine taking in rats. Addict. Biol., 2012, 17, 437-440.
[102]
Crews, F.T.; Walter, T.J.; Coleman, L.G., Jr; Vetreno, R.P. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl.), 2017, 234, 1483-1498.
[103]
Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R. DAT isn’t all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Mol. Psychiatry, 2015, 20, 1525-1537.
[104]
Poland, R.S.; Hahn, Y.; Knapp, P.E.; Beardsley, P.M.; Bowers, M.S. Ibudilast attenuates expression of behavioral sensitization to cocaine in male and female rats. Neuropharmacology, 2016, 109, 281-292.
[105]
Thomsen, M.; Caine, S.B. Psychomotor stimulant effects of cocaine in rats and 15 mouse strains. Exp. Clin. Psychopharmacol., 2011, 19, 321-341.
[106]
Sarruf, D.A. Yu. F.; Nguyen, H.T.; Williams, D.L.; Printz, R.L.; Niswender, K.D.; Schwartz, M.W. Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology, 2009, 150, 707-712.
[107]
de Guglielmo, G.; Melis, M.; De Luca, M.A.; Kallupi, M.; Li, H.W.; Niswender, K.; Giordano, A.; Senzacqua, M.; Somaini, L.; Cippitelli, A.; Gaitanaris, G.; Demopulos, G.; Damadzic, R.; Tapocik, J.; Heilig, M.; Ciccocioppo, R. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology, 2015, 40, 927-937.
[108]
de Guglielmo, G.; Kallupi, M.; Scuppa, G.; Demopulos, G.; Gaitanaris, G.; Ciccocioppo, R. Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents. Psychopharmacology (Berl.), 2017, 234, 223-234.
[109]
Jones, J.D.; Sullivan, M.A.; Manubay, J.M.; Mogali, S.; Metz, V.E.; Ciccocioppo, R.; Comer, S.D. The effects of pioglitazone, a PPARγ receptor agonist, on the abuse liability of oxycodone among nondependent opioid users. Physiol. Behav., 2016, 159, 33-39.
[110]
Schmitz, J.M.; Green, C.E.; Hasan, K.M.; Vincent, J.; Suchting, R.; Weaver, M.F.; Moeller, F.G.; Narayana, P.A.; Cunningham, K.A.; Dineley, K.T.; Lane, S.D. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial. Addiction, 2017, 112, 1861-1868.
[111]
Cooper, Z.D.; Johnson, K.W.; Pavlicova, M.; Glass, A.; Vosburg, S.K.; Sullivan, M.A.; Manubay, J.M.; Martinez, D.M.; Jones, J.D.; Saccone, P.A.; Comer, S.D. The effects of ibudilast, a glial activation inhibitor, on opioid withdrawal symptoms in opioid-dependent volunteers. Addict. Biol., 2016, 21, 895-903.
[112]
Metz, V.E.; Jones, J.D.; Manubay, J.; Sullivan, M.A.; Mogali, S.; Segoshi, A.; Madera, G.; Johnson, K.W.; Comer, S.D. Effects of ibudilast on the subjective, reinforcing, and analgesic effects of oxycodone in recently detoxified adults with opioid dependence. Neuropsychopharmacology, 2017, 42, 1825-1832.
[113]
DeYoung, D.Z.; Heinzerling, K.G.; Swanson, A.N.; Tsuang, J.; Furst, B.A.; Yi, Y.; Wu, Y.N.; Moody, D.E.; Andrenyak, D.M.; Shoptaw, S.J. Safety of intravenous methamphetamine administration during ibudilast treatment. J. Clin. Psychopharmacol., 2016, 36, 347-354.
[114]
Sofuoglu, M.; Mooney, M.; Kosten, T.; Waters, A.; Hashimoto, K. Minocycline attenuates subjective rewarding effects of dextroamphetamine in humans. Psychopharmacology (Berl.), 2011, 213, 61-68.
[115]
Ciraulo, D.A.; Sarid-Segal, O.; Knapp, C.M.; Ciraulo, A.M.; LoCastro, J.; Bloch, D.A.; Montgomery, M.A.; Leiderman, D.B.; Elkashef, A. Efficacy screening trials of paroxetine, pentoxifylline, riluzole, pramipexole and venlafaxine in cocaine dependence. Addiction, 2005, 100, 12-22.
[116]
Amen, S.L.; Piacentine, L.B.; Ahmad, M.E.; Li, S.J.; Mantsch, J.R.; Risinger, R.C.; Baker, D.A. Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology, 2011, 36, 871-878.
[117]
LaRowe, S.D.; Kalivas, P.W.; Nicholas, J.S.; Randall, P.K.; Mardikian, P.N.; Malcolm, R.J. A double-blind placebo-controlled trial of N-acetylcysteine in the treatment of cocaine dependence. Am. J. Addict., 2013, 22, 443-452.
[118]
Back, S.E.; McCauley, K.L.; Korte, K.J.; Gros, D.F.; Leavitt, V.; Gray, K.M.; Hamner, M.B.; DeSantis, S.M.; Malcolm, R.; Brady, K.T.; Kalivas, P.W. A Double-blind randomized controlled pilot trial of N-acetylcysteine in veterans with PTSD and substance use disorders. J. Clin. Psychiatry, 2016, 77, e1439-e1446.
[119]
Mousavi, S.G.; Sharbafchi, M.R.; Salehi, M.; Peykanpour, M.; Karimian Sichani, N.; Maracy, M. The efficacy of N-acetylcysteine in the treatment of methamphetamine dependence: a double-blind controlled, crossover study. Arch. Iran Med., 2015, 18, 28-33.
[120]
Magrone, T.; Jirillo, E. Prebiotics and Probiotics in Aging Population:
Effects on the Immune-Gut Microbiota Axis. In: Molecular
Basis of Nutrition and Aging: A Volume in the Molecular Nutrition
Series;, Malavolta, M.; Mocchegiani, E., Eds.; Elsevier. 2016, pp.
681-692.
[121]
Jeynes, K.D.; Gibson, E.L. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend., 2017, 179, 229-239.
[122]
Bourke, C.D.; Berkley, J.A.; Prendergast, A.J. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol., 2016, 37(6), 386-398.
[123]
Magrone, T.; Kumazawa, Y.; Jirillo, E. Polyphenol-mediated beneficial
effects in healthy status and disease with special references to
immune-based mechanisms. In: Polyphenols in Human Health and
Disease;, Watson, R.R.; Preedy, V.; Zibaldi, S., Eds.; Elsevier:. 2014, Vol. 1, pp. 467-479.
[124]
Magrone, T.; Salvatore, R.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Jirillo, E. In vitro effects of nickel on healthy non-allergic peripheral blood mononuclear cells. The role of red grape polyphenols. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17, 166-173.
[125]
Magrone, T.; Candore, G.; Caruso, C.; Jirillo, E.; Covelli, V. Polyphenols from red wine modulate immune responsiveness: biological and clinical significance. Curr. Pharm. Des., 2008, 14, 2733-2748.
[126]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune profile of obese people and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017, 2017, 9210862.