[1]
Team, V.A.M. WHO vaccine-preventable diseases: monitoring system; , 2004. global summary. WHO Department of Immunization, Vaccines and Biologicals. WHO document production services, Geneva, Switzerland.
[2]
AlMatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol. Res., 2017, 128, 288-305.
[3]
Cohn, D.L. Treatment of latent tuberculosis infection: renewed opportunity for tuberculosis control. Clin. Infect. Dis., 2000, 31, 120-124.
[4]
AlMatar, M.; Makky, E.A.; Var, I.; Kayar, B.; Köksal, F. Novel compounds targeting InhA for TB therapy. Pharmacol. Rep., 2017, 70, 217-226.
[5]
Chang, S.; Cataldo, J. A systematic review of global cultural variations in knowledge, attitudes and health responses to tuberculosis stigma. Int. J. Tuberc. Lung Dis., 2014, 18, 168-173.
[6]
Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by in an urban community. Int. J. Tuberc. Lung Dis., 2005, 9, 970-976.
[7]
Dheda, K.; Barry, C.E., III; Maartens, G. Tuberculosis. The Lancet, 2016, 387, 1211-1226.
[8]
Cardona, P.J. The progress of therapeutic vaccination with regard to tuberculosis. Front. Microbiol., 2016, 7, 1536.
[9]
Moliva, J.I.; Turner, J.; Torrelles, J.B. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine, 2015, 33, 5035-5041.
[10]
Knight, G.M.; Griffiths, U.K.; Sumner, T.; Laurence, Y.V.; Gheorghe, A.; Vassall, A.; Glaziou, P.; White, R.G. Impact and cost-effectiveness of new tuberculosis vaccines in low-and middle-income countries. Proc. Natl. Acad. Sci., 2014, 111, 15520-15525.
[11]
Cayabyab, M.J.; Macovei, L.; Campos-Neto, A. Current and novel approaches to vaccine development against tuberculosis. Front. Cell. Infect. Microbiol., 2012, 2, 154.
[12]
Brennan, M.J.; Thole, J. Tuberculosis vaccines: A strategic blueprint for the next decade. Tuberculosis, 2012, 92, S6-S13.
[13]
Fennelly, K.P.; Jones-López, E.C.; Ayakaka, I.; Kim, S.; Menyha, H.; Kirenga, B.; Muchwa, C.; Joloba, M.; Dryden-Peterson, S.; Reilly, N. Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med., 2012, 186, 450-457.
[14]
Lawn, S.D.; Zumla, A.I. Tuberculosis. The Lancet, 2011, 378, 57-72.
[15]
Riley, R.; Mills, C.; Nyka, W.; Weinstock, N.; Storey, P.; Sultan, L.; Riley, M.; Wells, W. Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. Am. J. Hyg., 1959, 70, 185-196.
[16]
Sturgill-Koszycki, S.; Schlesinger, P.H.; Chakraborty, P.; Haddix, P.L.; Collins, H.L.; Fok, A.K.; Allen, R.D.; Gluck, S.L.; Heuser, J.; Russell, D.G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science, 1994, 263, 678-681.
[17]
Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat. Rev. Microbiol., 2010, 8, 668.
[18]
Divangahi, M.; Chen, M.; Gan, H.; Desjardins, D.; Hickman, T.T.; Lee, D.M.; Fortune, S.; Behar, S.M.; Remold, H.G. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol., 2009, 10, 899.
[19]
Guirado, E.; Schlesinger, L.S.; Kaplan, G. Macrophages in
tuberculosis: Friend or foe. In Seminars in immunopathology. Springer, 2013, 35 563-583.
[20]
Samstein, M.; Schreiber, H.A.; Leiner, I.M.; Sušac, B.; Glickman, M.S.; Pamer, E.G. Essential yet limited role for CCR2+ inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife, 2013, 2, e01086.
[21]
Chackerian, A.A.; Alt, J.M.; Perera, T.V.; Dascher, C.C.; Behar, S.M. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun., 2002, 70, 4501-4509.
[22]
Reece, S.T.; Kaufmann, S.H. Floating between the poles of pathology and protection: can we pin down the granuloma in tuberculosis? Curr. Opin. Microbiol., 2012, 15, 63-70.
[23]
Silva, C.L.; Lowrie, D.B. Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect. Immun., 2000, 68, 3269-3274.
[24]
Gengenbacher, M.; Rao, S.P.; Pethe, K.; Dick, T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology, 2010, 156, 81-87.
[25]
Wayne, L.G.; Hayes, L.G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun., 1996, 64, 2062-2069.
[26]
Shaler, C.R.; Horvath, C.; Lai, R.; Xing, Z. Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis. Clin. Dev. Immunol., 2012, 2012, 1-13.
[27]
Mulligan, M.J.; Bernstein, D.I.; Frey, S.; Winokur, P.; Rouphael, N.; Dickey, M.; Edupuganti, S.; Spearman, P.; Anderson, E.; Graham, I. Point-of-use mixing of influenza H5N1 vaccine and
MF59 adjuvant for pandemic vaccination preparedness: antibody
responses and safety. A phase 1 clinical trial. Open Forum Infec.
Dis., Oxford University Press, 2014, 1, 102.
[28]
Pouliot, K.; Buglione-Corbett, R.; Marty-Roix, R.; Montminy-Paquette, S.; West, K.; Wang, S.; Lu, S.; Lien, E. Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine, 2014, 32, 5049-5056.
[29]
Shen, H.; Tesar, B.M.; Walker, W.E.; Goldstein, D.R. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J. Immun., 2008, 181, 1849-1858.
[30]
Werninghaus, K.; Babiak, A.; Groß, O.; Hölscher, C.; Dietrich, H.; Agger, E.M.; Mages, J.; Mocsai, A.; Schoenen, H.; Finger, K. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ–Syk–Card9–dependent innate immune activation. J. Exp. Med., 2009, 206, 89-97.
[31]
Fochesato, M.; Dendouga, N.; Boxus, M. Comparative preclinical evaluation of AS01 versus other adjuvant systems in a candidate herpes zoster glycoprotein E subunit vaccine. Hum. Vaccin. Immunother., 2016, 12, 2092-2095.
[32]
Derrick, S.C.; Yang, A.; Parra, M.; Kolibab, K.; Morris, S.L. Effect of cationic liposomes on BCG trafficking and vaccine-induced immune responses following a subcutaneous immunization in mice. Vaccine, 2015, 33, 126-132.
[33]
Moyle, P.M. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnol. Adv., 2017, 35, 375-389.
[34]
Baldwin, S.L.; Bertholet, S.; Reese, V.A.; Ching, L.K.; Reed, S.G.; Coler, R.N. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol., 2012, 188, 2189-2197.
[35]
Bertholet, S.; Ireton, G.C.; Ordway, D.J.; Windish, H.P.; Pine, S.O.; Kahn, M.; Phan, T.; Orme, I.M.; Vedvick, T.S.; Baldwin, S.L. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci. Transl. Med., 2010, 2, 53-74.
[36]
Wang, X.; Zhang, J.; Liang, J.; Zhang, Y.; Teng, X.; Yuan, X.; Fan, X. Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells. PLoS One, 2015, 10, e0122560.
[37]
Ma, J.; Tian, M.; Fan, X.; Yu, Q.; Jing, Y.; Wang, W.; Li, L.; Zhou, Z. Mycobacterium tuberculosis multistage antigens confer comprehensive protection against pre-and post-exposure infections by driving Th1-type T cell immunity. Oncotarget, 2016, 7, 63804.
[38]
Philips, J.A.; Ernst, J.D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol., 2012, 7, 353-384.
[39]
Singh, M.; O’Hagan, D. Advances in vaccine adjuvants. Nat. Biotechnol., 1999, 17, 1075.
[40]
Ulmer, J.B.; Valley, U.; Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol., 2006, 24, 1377.
[41]
Newman, M.J.; Balusubramanian, M.; Todd, C.W. Development of adjuvant-active nonionic block copolymers. Adv. Drug Deliv. Rev., 1998, 32, 199-223.
[42]
Hunter, R.L. Overview of vaccine adjuvants: present and future. Vaccine, 2002, 20, S7-S12.
[43]
Schijns, V.; Brewer, J. Immunopotentiators in Modern Vaccines (IMV-II) held in Malaga, Spain, May 18-20, 2005. Vaccine, 2006, 26, 5391-5392.
[44]
Van Der Meeren, O.; Hatherill, M.; Nduba, V.; Wilkinson, R.J.; Muyoyeta, M.; Van Brakel, E.; Ayles, H.M.; Henostroza, G.; Thienemann, F.; Scriba, T.J.; Diacon, A.; Blatner, G.L.; Demoitié, M-A.; Tameris, M.; Malahleha, M.; Innes, J.C.; Hellström, E.; Martinson, N.; Singh, T.; Akite, E.J.; Khatoon Azam, A.; Bollaerts, A.; Ginsberg, A.M.; Evans, T.G.; Gillard, P.; Tait, D.R. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N. Engl. J. Med., 2018, 379, 1621-1634.
[45]
Garçon, N.; Chomez, P.; Van Mechelen, M. GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines, 2007, 6, 723-739.
[46]
Olafsdottir, T.; Lingnau, K.; Nagy, E.; Jonsdottir, I. IC31, a Two- Component Novel Adjuvant Mixed with a Conjugate Vaccine Enhances Protective Immunity against Pneumococcal Disease in Neonatal Mice. Scand. J. Immunol., 2009, 69, 194-202.
[47]
van Dissel, J.T.; Arend, S.M.; Prins, C.; Bang, P.; Tingskov, P.N.; Lingnau, K.; Nouta, J.; Klein, M.R.; Rosenkrands, I.; Ottenhoff, T.H. Ag85B–ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naïve human volunteers. Vaccine, 2010, 28, 3571-3581.
[48]
Nemes, E.; Geldenhuys, H.; Rozot, V.; Rutkowski, K.T.; Ratangee, F.; Bilek, N.; Mabwe, S.; Makhethe, L.; Erasmus, M.; Toefy, A.; Mulenga, H.; Hanekom, W.A.; Self, S.G.; Bekker, L-G.; Ryall, R.; Gurunathan, S. DiazGranados, C.A.; Andersen, P.; Kromann, I.; Evans, T.; Ellis, R.D.; Landry, B.; Hokey, D.A.; Hopkins, R.; Ginsberg, A. M.; Scriba, T.J.; Hatherill, M. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N. Engl. J. Med., 2018, 379, 138-149.
[49]
Davidsen, J.; Rosenkrands, I.; Christensen, D.; Vangala, A.; Kirby, D.; Perrie, Y.; Agger, E.M.; Andersen, P. Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6, 6′-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim. Biophys. Acta, 2005, 1718, 22-31.
[50]
Baldwin, S.L.; Bertholet, S.; Reese, V.A.; Ching, L.K.; Reed, S.G.; Coler, R.N. The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol., 2012, 188, 2189-2197.
[51]
Milicic, A.; Kaur, R.; Reyes-Sandoval, A.; Tang, C-K.; Honeycutt, J.; Perrie, Y.; Hill, A.V. Small cationic DDA: TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PLoS One, 2012, 7, e34255.
[52]
Latif, N.; Bachhawat, B.K. The effect of surface charges of liposomes in immunopotentiation. Biosci. Rep., 1984, 4, 99-107.
[53]
McNeil, S.E.; Rosenkrands, I.; Agger, E.M.; Andersen, P.; Perrie, Y. Subunit vaccines: Distearoylphosphatidylcholine-based liposomes entrapping antigen offer a neutral alternative to dimethyldioctadecylammonium-based cationic liposomes as an adjuvant delivery system. J. Pharm. Sci., 2011, 100, 1856-1865.
[54]
Fomsgaard, A.; Karlsson, I.; Gram, G.; Schou, C.; Tang, S.; Bang, P.; Kromann, I.; Andersen, P.; Andreasen, L.V. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine, 2011, 29, 7067-7074.
[55]
Carmona-Ribeiro, A.; Chaimovich, H. Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles. Biophys. J., 1986, 50, 621-628.
[56]
Luuk, A.T.; Snippe, H.; Jansze, M.; Willers, J.M. Combinations of two synthetic adjuvants: synergistic effects of a surfactant and a polyanion on the humoral immune response. Cell. Immunol., 1985, 92, 203-209.
[57]
Foged, C.; Arigita, C.; Sundblad, A.; Jiskoot, W.; Storm, G.; Frokjaer, S. Interaction of dendritic cells with antigen-containing liposomes: Effect of bilayer composition. Vaccine, 2004, 22, 1903-1913.
[58]
Hui, S.W.; Langner, M.; Zhao, Y.L.; Ross, P.; Hurley, E.; Chan, K. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J., 1996, 71, 590-599.
[59]
Zuhorn, I.; Hoekstra, D. On the mechanism of cationic amphiphile-mediated transfection. To fuse or not to fuse: İs that the question? J. Membr. Biol., 2002, 189, 167-179.
[60]
Brandt, L.; Elhay, M.; Rosenkrands, I.; Lindblad, E.B.; Andersen, P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect. Immun., 2000, 68, 791-795.
[61]
Zaks, K.; Jordan, M.; Guth, A.; Sellins, K.; Kedl, R.; Izzo, A.; Bosio, C.; Dow, S. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J. Immunol., 2006, 176, 7335-7345.
[62]
Bal, S.M.; Hortensius, S.; Ding, Z.; Jiskoot, W.; Bouwstra, J.A. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine, 2011, 29, 1045-1052.
[63]
Choe, J.; Kelker, M.S.; Wilson, I.A. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science, 2005, 309, 581-585.
[64]
Bell, J.K.; Askins, J.; Hall, P.R.; Davies, D.R.; Segal, D.M. The dsRNA binding site of human Toll-like receptor 3. Proc. Natl. Acad. Sci., 2006, 103, 8792-8797.
[65]
Heffernan, M.J.; Kasturi, S.P.; Yang, S.C.; Pulendran, B.; Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly (inosinic acid)-poly (cytidylic acid). Biomaterials, 2009, 30, 910-918.
[66]
Luo, Y.; Wang, B.; Hu, L.; Yu, H.; Da, Z.; Jiang, W.; Song, N.; Qie, Y.; Wang, H.; Tang, Z. Fusion protein Ag85B-MPT64190–198-Mtb8. 4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice. Vaccine, 2009, 27, 6179-6185.
[67]
Lee, K-W.; Jung, J.; Lee, Y.; Kim, T-Y.; Choi, S-Y.; Park, J.; Kim, D-S.; Kwon, H-J. Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol., 2006, 43, 2107-2118.
[68]
Pimm, M.V.; Baldwin, R.W.; Polonsky, J.; Lederer, E. Immunotherapy of an ascitic rat hepatoma with cord factor (trehalose‐6, 6′‐dimycolate) and synthetic analogues. Int. J. Cancer, 1979, 24, 780-785.
[69]
Liu, X.; Da, Z.; Wang, Y.; Niu, H.; Li, R.; Yu, H.; He, S.; Guo, M.; Wang, Y.; Luo, Y. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine, 2016, 34, 1370-1378.
[70]
Ribeiro, A.C.; Chaimovich, H. Preparation and characterization of large dioctadecyldimethylammonium chloride liposomes and comparison with small sonicated vesicles. Biochim. Biophys. Acta, 1983, 733, 172-179.
[71]
Korsholm, K.S.; Petersen, R.V.; Agger, E.M.; Andersen, P. T‐helper 1 and T‐helper 2 adjuvants induce distinct differences in the magnitude, quality and kinetics of the early inflammatory response at the site of injection. Immunology, 2010, 129, 75-86.
[72]
Christensen, D.; Agger, E.M.; Andreasen, L.V.; Kirby, D.; Andersen, P.; Perrie, Y. Liposome-based cationic adjuvant formulations (CAF): Past, present, and future. J. Liposome Res., 2009, 19, 2-11.
[73]
Schwendener, R.A. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines, 2014, 2, 159-182.
[74]
Pulendran, B. Modulating vaccine responses with dendritic cells and Toll‐like receptors. Immunol. Rev., 2004, 199, 227-250.
[75]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11, 373.
[76]
Holten-Andersen, L.; Doherty, T.; Korsholm, K.; Andersen, P. Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infect. Immun., 2004, 72, 1608-1617.
[77]
Yu, H.; Jiang, X.; Shen, C.; Karunakaran, K.P.; Jiang, J.; Rosin, N.L.; Brunham, R.C. Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-γ)/tumor necrosis factor alpha and IFN-γ/interleukin-17 double-positive CD4+ T cells. Infect. Immun., 2010, 78, 2272-2282.
[78]
Andersen, C.A.S.; Rosenkrands, I.; Olsen, A.W.; Nordly, P.; Christensen, D.; Lang, R.; Kirschning, C.; Gomes, J.M.; Bhowruth, V.; Minnikin, D.E. Novel generation mycobacterial adjuvant based on liposome-encapsulated monomycoloyl glycerol from Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol., 2009, 183, 2294-2302.
[79]
Korsholm, K.S.; Andersen, P.L.; Christensen, D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev. Vaccines, 2012, 11, 561-577.
[80]
Gregoriadis, G.; Davis, C. Stability of liposomes invivo and invitro is promoted by their cholesterol content and the presence of blood cells. Biochem. Biophys. Res. Commun., 1979, 89, 1287-1293.
[81]
Lay, M.; Callejo, B.; Chang, S.; Hong, D.K.; Lewis, D.B.; Carroll, T.D.; Matzinger, S.; Fritts, L.; Miller, C.J.; Warner, J.F. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone®) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine, 2009, 27, 3811-3820.
[82]
Zhang, X.P.; Yang, L.; Shi, H.S.; Zhao, X.; Deng, H.X.; Xiao, W.J.; Mao, Y.Q.; Kan, B.; Liu, Y.L.; Zhang, S.; An, N. C-terminally truncated basic fibroblast growth factor and LPD (liposome-polycation-DNA) complex elicits a protective immune response against murine colon carcinoma. Cancer Biol. Ther., 2010, 10, 276-281.
[83]
Huang, Q.; Yu, W.; Hu, T. Potent antigen-adjuvant delivery system by conjugation of Mycobacterium tuberculosis Ag85B-HspX fusion protein with arabinogalactan-Poly (I: C) conjugate. Bioconjug. Chem., 2016, 27, 1165-1174.
[84]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140, 805-820.
[85]
Sobel, D.O.; Goyal, D.; Ahvazi, B.; Yoon, J-W.; Chung, Y.H.; Bagg, A.; Harlan, D.M. Low dose poly I: C prevents diabetes in the diabetes prone BB rat. J. Autoimmun., 1998, 11, 343-352.
[86]
Goellner, E.M.; Utermoehlen, J.; Kramer, R.; Classen, B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym., 2011, 86, 1739-1744.
[87]
Currier, N.; Lejtenyi, D.; Miller, S. Effect over time of in-vivo administration of the polysaccharide arabinogalactan on immune and hemopoietic cell lineages in murine spleen and bone marrow1. Phytomedicine, 2003, 10, 145-153.
[88]
Kumar, H.; Koyama, S.; Ishii, K.J.; Kawai, T.; Akira, S. Cutting edge: Cooperation of IPS-1-and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J. Immunol., 2008, 180, 683-687.
[89]
Mata-Haro, V.; Cekic, C.; Martin, M.; Chilton, P.M.; Casella, C.R.; Mitchell, T.C. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science, 2007, 316, 1628-1632.
[90]
Mbow, M.L.; De Gregorio, E.; Valiante, N.M.; Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol., 2010, 22, 411-416.
[91]
Schoenen, H.; Bodendorfer, B.; Hitchens, K.; Manzanero, S.; Werninghaus, K.; Nimmerjahn, F.; Agger, E.M.; Stenger, S.; Andersen, P.; Ruland, J. Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol., 2010, 184, 2756-2760.
[92]
Gram, G.J.; Karlsson, I.; Agger, E.M.; Andersen, P.; Fomsgaard, A. A novel liposome-based adjuvant CAF01 for induction of CD8+ cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A* 0201 transgenic mice. PLoS One, 2009, 4, e6950.
[93]
Nordly, P.; Agger, E.M.; Andersen, P.; Nielsen, H.M.; Foged, C. Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo. Pharm. Res., 2011, 28, 553-562.
[94]
O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P. The immune response in tuberculosis. Annu. Rev. Immunol., 2013, 31, 475-527.
[95]
Winau, F.; Weber, S.; Sad, S.; De Diego, J.; Hoops, S.L.; Breiden, B.; Sandhoff, K.; Brinkmann, V.; Kaufmann, S.H.; Schaible, U.E. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity, 2006, 24, 105-117.
[96]
Tascon, R.E.; Stavropoulos, E.; Lukacs, K.V.; Colston, M.J. Protection against Mycobacterium tuberculos isInfection by CD8+ T cells requires the production of gamma ınterferon. Infect. Immun., 1998, 66, 830-834.
[97]
van der Wel, N.; Hava, D.; Houben, D.; Fluitsma, D.; van Zon, M.; Pierson, J.; Brenner, M.; Peters, P.J.M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell, 2007, 129, 1287-1298.
[98]
Panas, M.W.; Sixsmith, J.D.; White, K.; Korioth-Schmitz, B.; Shields, S.T.; Moy, B.T.; Lee, S.; Schmitz, J.E.; Jacobs, W.R.; Porcelli, S.A. Gene deletions in Mycobacterium bovis BCG stimulate increased CD8+ T cell responses. Infect. Immun., 2014, 82, 5317-5326.
[99]
Schaible, U.E.; Winau, F.; Sieling, P.A.; Fischer, K.; Collins, H.L.; Hagens, K.; Modlin, R.L.; Brinkmann, V.; Kaufmann, S.H. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat. Med., 2003, 9, 1039.
[100]
Farinacci, M.; Weber, S.; Kaufmann, S.H.E. The recombinant tuberculosis vaccine rBCG ΔureC:hly+ induces apoptotic vesicles for improved priming of CD4+ and CD8+ T cells. Vaccine, 2012, 30, 7608-7614.
[101]
Billeskov, R.; Vingsbo-Lundberg, C.; Andersen, P.; Dietrich, J. Induction of CD8 T cells against a novel epitope in TB10. 4: correlation with mycobacterial virulence and the presence of a functional region of difference-1. J. Immunol., 2007, 179, 3973-3981.
[102]
Billeskov, R.; Grandal, M.V.; Poulsen, C.; Christensen, J.P.; Winter, N.; Vingsbo‐Lundberg, C.; Hoang, T.T.; Van Deurs, B.; Song, Y.H.; Aagaard, C. Difference in TB10. 4 T‐cell epitope recognition following immunization with recombinant TB10. 4, BCG or infection with Mycobacterium tuberculosis. Eur. J. Immunol., 2010, 40, 1342-1354.
[103]
Lowrie, D.B.; Silva, C.L.; Tascon, R.E. DNA vaccines against tuberculosis. Immunol. Cell Biol., 1997, 75, 591.
[104]
Xing, Z.; Lichty, B.D. Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis, 2006, 86, 211-217.
[105]
Stenger, S.; Hanson, D.A.; Teitelbaum, R.; Dewan, P.; Niazi, K.R.; Froelich, C.J.; Ganz, T.; Thoma-Uszynski, S.; Melián, A.N.; Bogdan, C. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science, 1998, 282, 121-125.
[106]
Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P-J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med., 2011, 17, 189.
[107]
Colditz, G.A.; Berkey, C.S.; Mosteller, F.; Brewer, T.F.; Wilson, M.E.; Burdick, E.; Fineberg, H.V. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics, 1995, 96, 29-35.
[108]
Trunz, B.B.; Fine, P.; Dye, C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. The Lancet, 2006, 367, 1173-1180.
[109]
Roth, A.; Garly, M.; Jensen, H.; Nielsen, J.; Aaby, P. Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev. Vaccines, 2006, 5, 277-293.
[110]
Lerm, M.; Netea, M. Trained immunity: a new avenue for tuberculosis vaccine development. J. Intern. Med., 2016, 279, 337-346.
[111]
Scriba, T.J.; Kaufmann, S.H.; Henri Lambert, P.; Sanicas, M.; Martin, C.; Neyrolles, O. Vaccination against tuberculosis with whole-cell mycobacterial vaccines. J. Infect. Dis., 2016, 214, 659-664.
[112]
Geoffroy, C.; Gaillard, J.L.; Alouf, J.E.; Berche, P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun., 1987, 55, 1641-1646.
[113]
Saiga, H.; Nieuwenhuizen, N.; Gengenbacher, M.; Koehler, A.B.; Schuerer, S.; Moura-Alves, P.; Wagner, I.; Mollenkopf, H-J.; Dorhoi, A.; Kaufmann, S.H.E. The Recombinant BCG ΔureC:hly Vaccine Targets the AIM2 Inflammasome to Induce Autophagy and Inflammation. J. Infect. Dis., 2015, 211, 1831-1841.
[114]
Grode, L.; Seiler, P.; Baumann, S.; Hess, J.; Brinkmann, V.; Eddine, A.N.; Mann, P.; Goosmann, C.; Bandermann, S.; Smith, D. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Iinvestigat., 2005, 115, 2472-2479.
[115]
Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, 3rd, j.; Eisele, B.; Kaufmann, S.H. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31, 1340-1348.
[116]
Kaufmann, S.H.; Cotton, M.F.; Eisele, B.; Gengenbacher, M.; Grode, L.; Hesseling, A.C.; Walzl, G. The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev. Vaccines, 2014, 13, 619-630.
[117]
Vogelzang, A.; Perdomo, C.; Zedler, U.; Kuhlmann, S.; Hurwitz, R.; Gengenbacher, M.; Kaufmann, S.H. Central Memory CD4+ T Cells Are Responsible for the Recombinant Bacillus Calmette-Guérin Δ ureC: hly Vaccine’s Superior Protection Against Tuberculosis. J. Infect. Dis., 2014, 210, 1928-1937.
[118]
Arbues, A.; Aguilo, J.I.; Gonzalo-Asensio, J.; Marinova, D.; Uranga, S.; Puentes, E.; Fernandez, C.; Parra, A.; Cardona, P.J.; Vilaplana, C. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine, 2013, 31, 4867-4873.
[119]
Walker, K.; Brennan, M.; Ho, M.; Eskola, J.; Thiry, G.; Sadoff, J.; Dobbelaer, R.; Grode, L.; Liu, M.; Fruth, U. The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine, 2010, 28, 2259-2270.
[120]
Nambiar, J.K.; Pinto, R.; Aguilo, J.I.; Takatsu, K.; Martin, C.; Britton, W.J.; Triccas, J.A. Protective immunity afforded by attenuated, PhoP‐deficient Mycobacterium tuberculosis is associated with sustained generation of CD4+ T‐cell memory. Eur. J. Immunol., 2012, 42, 385-392.
[121]
Spertini, F.; Audran, R.; Chakour, R.; Karoui, O.; Steiner-Monard, V.; Thierry, A-C.; Mayor, C.E.; Rettby, N.; Jaton, K.; Vallotton, L. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: A randomised, double-blind, controlled phase I trial. Lancet Respir. Med., 2015, 3, 953-962.
[122]
Aguilo, N.; Uranga, S.; Marinova, D.; Monzon, M.; Badiola, J.; Martin, C. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis, 2016, 96, 71-74.
[123]
Vilaplana, C.; Ruiz‐Manzano, J.; Gil, O.; Cuchillo, F.; Montane, E.; Singh, M.; Spallek, R.; Ausina, V.; Cardona, P. The Tuberculin Skin Test Increases the Responses Measured by T Cell Interferon‐Gamma Release Assays. Scand. J. Immunol., 2008, 67, 610-617.
[124]
Zumla, A.; George, A.; Sharma, V.; Herbert, R.H.N.; Oxley, A.; Oliver, M. The WHO 2014 global tuberculosis report—further to go. Lancet Glob. Health, 2015, 3, e10-e12.
[125]
Gil, O.; Guirado, E.; Gordillo, S.; Díaz, J.; Tapia, G.; Vilaplana, C.; Ariza, A.; Ausina, V.; Cardona, P.J. Intragranulomatous necrosis in lungs of mice infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type. Microbes Infect., 2006, 8, 628-636.
[126]
Vilaplana, C.; Montané, E.; Pinto, S.; Barriocanal, A.; Domenech, G.; Torres, F.; Cardona, P.; Costa, J. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI®. Vaccine, 2010, 28, 1106-1116.
[127]
Vilaplana, C.; Gil, O.; Cáceres, N.; Pinto, S.; Díaz, J.; Cardona, P.J. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis. PLoS One, 2011, 6, e20404.
[128]
Nell, A.S.; D’lom, E.; Bouic, P.; Sabaté, M.; Bosser, R.; Picas, J.; Amat, M.; Churchyard, G.; Cardona, P.J. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One, 2014, 9, e89612.
[129]
Cardona, P.J. RUTI: A new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis, 2006, 86, 273-289.
[130]
Vilaplana, C.; Cardona, P.J. Tuberculin immunotherapy: İts history and lessons to be learned. Microbes Infect., 2010, 12, 99-105.
[131]
Kaufmann, S.H.; Bloom, B.; Brosch, R.; Cardona, P-J.; Dockrell, H.; Fritzell, B.; Grode, L.; Hanekom, W.; Hokey, D.; Levin, M. Developing whole mycobacteria cell vaccines for tuberculosis: workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014. Vaccine, 2015, 33, 3047-3055.
[132]
Yadava, A.; Suresh, N.; Zaheer, S.; Talwar, G.; Mukherjee, R. T‐Cell Responses to Fractionated Antigens of Mycobacterium w, a Candidate Anti‐Leprosy Vaccine, in Leprosy Patients. Scand. J. Immunol., 1991, 34, 23-31.
[133]
Gupta, A.; Geetha, N.; Mani, J.; Upadhyay, P.; Katoch, V.; Natrajan, M.; Gupta, U.; Bhaskar, S. Immunogenicity and protective efficacy of “Mycobacterium w” against Mycobacterium tuberculosis in mice immunized with live versus heat-killed M. w by the aerosol or parenteral route. Infect. Immun., 2009, 77, 223-231.
[134]
Faujdar, J.; Gupta, P.; Natrajan, M.; Das, R.; Chauhan, D.; Katoch, V.; Gupta, U. Mycobacterium indicus pranii as stand-alone or adjunct immunotherapeutic in treatment of experimental animal tuberculosis. Indian J. Med. Res., 2011, 134, 696.
[135]
Das, S.; Halder, K.; Goswami, A.; Chowdhury, B.P.; Pal, N.K.; Majumdar, S. Immunomodulation in host‐protective immune response against murine tuberculosis through regulation of the T regulatory cell function. J. Leukoc. Biol., 2015, 98, 827-836.
[136]
Rawat, K.D.; Chahar, M.; Reddy, P.; Gupta, P.; Shrivastava, N.; Gupta, U.; Natrajan, M.; Katoch, V.; Katoch, K.; Chauhan, D. Expression of CXCL10 (IP-10) and CXCL11 (I-TAC) chemokines during Mycobacterium tuberculosis infection and immunoprophylaxis with Mycobacterium indicus pranii (Mw) in guinea pig. Infect. Genet. Evol., 2013, 13, 11-17.
[137]
Sharma, S.K.; Katoch, K.; Sarin, R.; Balambal, R.; Jain, N.K.; Patel, N.; Murthy, K.J.; Singla, N.; Saha, P.; Khanna, A. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary tuberculosis in a randomized trial. Sci. Rep., 2017, 7, 3354.
[138]
Gupta, A.; Ahmad, F.; Ahmad, F.; Gupta, U.; Natarajan, M.; Katoch, V.; Bhaskar, S. Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine, 2012, 30, 6198-6209.
[139]
Gupta, A.; Ahmad, F.J.; Ahmad, F.; Gupta, U.D.; Natarajan, M.; Katoch, V.; Bhaskar, S. Efficacy of Mycobacterium indicus pranii immunotherapy as an adjunct to chemotherapy for tuberculosis and underlying immune responses in the lung. PLoS One, 2012, 7, e39215.
[140]
Brown, C.A.; Brown, I.; Swinburne, S. The effect of oral Mycobacterium vaccae on subsequent responses of mice to BCG sensitization. Tubercle, 1985, 66, 251-260.
[141]
von Reyn, C.F.; Mtei, L.; Arbeit, R.D.; Waddell, R.; Cole, B.; Mackenzie, T.; Matee, M.; Bakari, M.; Tvaroha, S.; Adams, L.V. Prevention of tuberculosis in Bacille Calmette–Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010, 24, 675-685.
[142]
Lalvani, A.; Sridhar, S.; von Reyn, C.F. Tuberculosis vaccines: Time to reset the paradigm?; BMJ Publishing Group Ltd., 2013.
[143]
Lahey, T.; Laddy, D.; Hill, K.; Schaeffer, J.; Hogg, A.; Keeble, J.; Dagg, B.; Ho, M.M.; Arbeit, R.D.; von Reyn, C.F. Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One, 2016, 11, e0168521.
[144]
Semple, P.L.; Binder, A.B.; Davids, M.; Maredza, A.; van Zyl-Smit, R.N.; Dheda, K. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am. J. Respir. Crit. Care Med., 2013, 187, 1249-1258.
[145]
Green, A.M.; Mattila, J.T.; Bigbee, C.L.; Bongers, K.S. Ling Lin, P.; Flynn, J.L. CD4+ regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J. Infect. Dis., 2010, 202, 533-541.
[146]
Leepiyasakulchai, C.; Ignatowicz, L.; Pawlowski, A.; Källenius, G.; Sköld, M. Failure to recruit anti-inflammatory CD103+ dendritic cells and a diminished CD4+ Foxp3+ regulatory T cell pool in mice that display excessive lung inflammation and increased susceptibility to Mycobacterium tuberculosis. Infect. Immun., 2012, 80, 1128-1139.
[147]
Cardona, P-J.; Prats, C. The small breathing amplitude at the upper lobes favors the attraction of polymorphonuclear neutrophils to Mycobacterium tuberculosis lesions and helps to understand the evolution toward active disease in an individual-based model. Front. Microbiol., 2016, 7, 354.
[148]
Montane, E.; Barriocanal, A.; Arellano, A.; Valderrama, A.; Sanz, Y.; Cardona, P. PD-1027-01 Clinical trial with the food supplement Nyaditum resae: a new tool to reduce the risk of developing active tuberculosis. Int. J. Tuberc. Lung Dis., 2014, 11, S427.
[149]
Goonetilleke, N.P.; McShane, H.; Hannan, C.M.; Anderson, R.J.; Brookes, R.H.; Hill, A.V. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol., 2003, 171, 1602-1609.
[150]
Wang, J.; Thorson, L.; Stokes, R.W.; Santosuosso, M.; Huygen, K.; Zganiacz, A.; Hitt, M.; Xing, Z. Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J. Immunol., 2004, 173, 6357-6365.
[151]
Rose, N.F.; Marx, P.A.; Luckay, A.; Nixon, D.F.; Moretto, W.J.; Donahoe, S.M.; Montefiori, D.; Roberts, A.; Buonocore, L.; Rose, J.K. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell, 2001, 106, 539-549.
[152]
Haglund, K.; Leiner, I.; Kerksiek, K.; Buonocore, L.; Pamer, E.; Rose, J.K. High-level primary CD8+ T-cell response to human immunodeficiency virus type 1 Gag and Env generated by vaccination with recombinant vesicular stomatitis viruses. J. Virol., 2002, 76, 2730-2738.
[153]
Clarke, D.K.; Nasar, F.; Lee, M.; Johnson, J.E.; Wright, K.; Calderon, P.; Guo, M.; Natuk, R.; Cooper, D.; Hendry, R.M. Synergistic attenuation of vesicular stomatitis virus by combination of specific G gene truncations and N gene translocations. J. Virol., 2007, 81, 2056-2064.
[154]
Braxton, C.L.; Puckett, S.H.; Mizel, S.B.; Lyles, D.S. Protection against lethal vaccinia virus challenge by using an attenuated matrix protein mutant vesicular stomatitis virus vaccine vector expressing poxvirus antigens. J. Virol., 2010, 84, 3552-3561.
[155]
Elamin, A.A.; Stehr, M.; Spallek, R.; Rohde, M.; Singh, M. The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol. Microbiol., 2011, 81, 1577-1592.
[156]
Publicover, J.; Ramsburg, E.; Rose, J.K. A single-cycle vaccine vector based on vesicular stomatitis virus can induce immune responses comparable to those generated by a replication-competent vector. J. Virol., 2005, 79, 13231-13238.
[157]
Roediger, E.K.; Kugathasan, K.; Zhang, X.; Lichty, B.D.; Xing, Z. Heterologous Boosting of Recombinant Adenoviral Prime Immunization With a Novel Vesicular Stomatitis Virus–vectored Tuberculosis Vaccine. Mol. Ther., 2008, 16, 1161-1169.
[158]
Harty, J.T.; Tvinnereim, A.R.; White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol., 2000, 18, 275-308.
[159]
Andersen, P.; Woodworth, J.S. Tuberculosis vaccines–rethinking the current paradigm. Trends Immunol., 2014, 35, 387-395.
[160]
Nunes-Alves, C.; Booty, M.G.; Carpenter, S.M.; Jayaraman, P.; Rothchild, A.C.; Behar, S.M. In search of a new paradigm for protective immunity to TB. Nat. Rev. Microbiol., 2014, 12, 289.
[161]
Ottenhoff, T.H.; Kaufmann, S.H. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog., 2012, 8, e1002607.
[162]
Wu, F.; Fan, X.; Yue, Y.; Xiong, S.; Dong, C. A vesicular stomatitis virus-based mucosal vaccine promotes dendritic cell maturation and elicits preferable immune response against coxsackievirus B3 induced viral myocarditis. Vaccine, 2014, 32, 3917-3926.
[163]
McShane, H.; Pathan, A.A.; Sander, C.R.; Keating, S.M.; Gilbert, S.C.; Huygen, K.; Fletcher, H.A.; Hill, A.V. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med., 2004, 10, 1240.
[164]
Williams, A.; Goonetilleke, N.; McShane, H.; Clark, S.O.; Hatch, G.; Gilbert, S.; Hill, A. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun., 2005, 73, 3814-3816.
[165]
Vordermeier, H.M.; Villarreal-Ramos, B.; Cockle, P.J.; McAulay, M.; Rhodes, S.G.; Thacker, T.; Gilbert, S.C.; McShane, H.; Hill, A.V.; Xing, Z. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun., 2009, 77, 3364-3373.
[166]
Sander, C.R.; Pathan, A.A.; Beveridge, N.E.; Poulton, I.; Minassian, A.; Alder, N.; Van Wijgerden, J.; Hill, A.V.; Gleeson, F.V.; Davies, R.J. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in mycobacterium tuberculosis–infected individuals. Am. J. Respir. Crit. Care Med., 2009, 179, 724-733.
[167]
Scriba, T.J.; Tameris, M.; Mansoor, N.; Smit, E.; van der Merwe, L.; Isaacs, F.; Keyser, A.; Moyo, S.; Brittain, N.; Lawrie, A. Modified vaccinia Ankara‐expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol., 2010, 40, 279-290.
[168]
Minassian, A.M.; Rowland, R.; Beveridge, N.E.; Poulton, I.D.; Satti, I.; Harris, S.; Poyntz, H.; Hamill, M.; Griffiths, K.; Sander, C.R. A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open, 2011, 1, e000223.
[169]
Dintwe, O.B.; Day, C.L.; Smit, E.; Nemes, E.; Gray, C.; Tameris, M.; McShane, H.; Mahomed, H.; Hanekom, W.A.; Scriba, T.J. Heterologous vaccination against human tuberculosis modulates antigen‐specific CD4+ T‐cell function. Eur. J. Immunol., 2013, 43, 2409-2420.
[170]
Satti, I.; Meyer, J.; Harris, S.A.; Thomas, Z-R.M.; Griffiths, K.; Antrobus, R.D.; Rowland, R.; Ramon, R.L.; Smith, M.; Sheehan, S. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect. Dis., 2014, 14, 939-946.
[171]
Kashangura, R.; Sena, E.S.; Young, T.; Garner, P. Effects of MVA85A vaccine on tuberculosis challenge in animals: systematic review. Int. J. Epidemiol., 2015, 44, 1970-1981.
[172]
O’Shea, M.K.; McShane, H. A review of clinical models for the evaluation of human TB vaccines. Hum. Vaccin. Immunother., 2016, 12, 1177-1187.
[173]
Ndiaye, B.P.; Thienemann, F.; Ota, M.; Landry, B.S.; Camara, M.; Dièye, S.; Dieye, T.N.; Esmail, H.; Goliath, R.; Huygen, K. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med., 2015, 3, 190-200.
[174]
Afkhami, S.; Yao, Y.; Xing, Z. Methods and clinical development of adenovirus-vectored vaccines against mucosal pathogens. Mol. Ther. Methods Clin. Dev., 2016, 3, 16030.
[175]
Kamen, A.; Henry, O. Development and optimization of an adenovirus production process. J. Gene Med., 2004, 6, 184-192.
[176]
Havenga, M.; Vogels, R.; Zuijdgeest, D.; Radosevic, K.; Mueller, S.; Sieuwerts, M.; Weichold, F.; Damen, I.; Kaspers, J.; Lemckert, A. Novel replication-incompetent adenoviral B-group vectors: high vector stability and yield in PER. C6 cells. J. Gen. Virol., 2006, 87, 2135-2143.
[177]
Radošević, K.; Wieland, C.W.; Rodriguez, A.; Weverling, G.J.; Mintardjo, R.; Gillissen, G.; Vogels, R.; Skeiky, Y.A.; Hone, D.M.; Sadoff, J.C. Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon. Infect. Immun., 2007, 75, 4105-4115.
[178]
Abel, B.; Tameris, M.; Mansoor, N.; Gelderbloem, S.; Hughes, J.; Abrahams, D.; Makhethe, L.; Erasmus, M.; Kock, M.d.; van der Merwe, L. The novel tuberculosis vaccine, AERAS-402, induces robust and polyfunctional CD4+ and CD8+ T cells in adults. Am. J. Respir. Crit. Care Med., 2010, 181, 1407-1417.
[179]
Triccas, J.A.; Counoupas, C. Novel vaccination approaches to prevent tuberculosis in children. Pneumonia, 2016, 8, 18.
[180]
Xing, Z.; McFarland, C.T.; Sallenave, J-M.; Izzo, A.; Wang, J.; McMurray, D.N. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One, 2009, 4, e5856.
[181]
de Val, B.P.; Villarreal-Ramos, B.; Nofrarías, M.; López-Soria, S.; Romera, N.; Singh, M.; Abad, F.X.; Xing, Z.; Vordermeier, H.M.; Domingo, M. Goats primed with Mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clin. Vaccine Immunol., 2012, 19, 1339-1347.
[182]
de Val, B.P.; Vidal, E.; Villarreal-Ramos, B.; Gilbert, S.C.; Andaluz, A.; Moll, X.; Martín, M.; Nofrarías, M.; McShane, H.; Vordermeier, H.M. A multi-antigenic adenoviral-vectored vaccine improves BCG-induced protection of goats against pulmonary tuberculosis infection and prevents disease progression. PLoS One, 2013, 8, e81317.
[183]
Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; del Rio, C. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): A double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet, 2008, 372, 1881-1893.
[184]
Appaiahgari, M.B.; Pandey, R.M.; Vrati, S. Seroprevalence of neutralizing antibodies to adenovirus type 5 among children in India: implications for recombinant adenovirus-based vaccines. Clin. Vaccine Immunol., 2007, 14, 1053-1055.
[185]
Zhou, D.; Zhou, X.; Bian, A.; Li, H.; Chen, H.; Small, J.C.; Li, Y.; Giles-Davis, W.; Xiang, Z.; Ertl, H.C. An efficient method of directly cloning chimpanzee adenovirus as a vaccine vector. Nat. Protoc., 2010, 5, 1775.
[186]
Roy, S.; Gao, G.; Lu, Y.; Zhou, X.; Lock, M.; Calcedo, R.; Wilson, J.M. Characterization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors. Hum. Gene Ther., 2004, 15, 519-530.
[187]
Colloca, S.; Barnes, E.; Folgori, A.; Ammendola, V.; Capone, S.; Cirillo, A.; Siani, L.; Naddeo, M.; Grazioli, F.; Esposito, M.L. Vaccine vectors derived from a large collection of simian adenoviruses induce potent cellular immunity across multiple species. Sci. Transl. Med., 2012. 4, 115ra2-115ra2.
[188]
Tatsis, N.; Tesema, L.; Robinson, E.; Giles-Davis, W.; McCoy, K.; Gao, G.; Wilson, J.; Ertl, H. Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther., 2006, 13, 421.
[189]
Sheridan, C. Erratum: Gene therapy finds its niche. Nat. Biotechnol., 2011, 29, 459.
[190]
Stylianou, E.; Griffiths, K.; Poyntz, H.; Harrington-Kandt, R.; Dicks, M.; Stockdale, L.; Betts, G.; McShane, H. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine, 2015, 33, 6800-6808.
[191]
Jeyanathan, M.; Thanthrige-Don, N.; Afkhami, S.; Lai, R.; Damjanovic, D.; Zganiacz, A.; Feng, X.; Yao, X.; Rosenthal, K.; Medina, M.F. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol., 2015, 8, 1373-1387.
[192]
Fahmy, T.M.; Demento, S.L.; Caplan, M.J.; Mellman, I.; Saltzman, W.M. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine, 2008, 3, 343-355.
[193]
Irvine, D.J.; Hanson, M.C.; Rakhra, K.; Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev., 2015, 115, 11109-11146.
[194]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: current status and future prospects. FASEB J., 2005, 19, 311-330.
[195]
Pirson, C.; Jones, G.J.; Steinbach, S.; Besra, G.S.; Vordermeier, H.M. Differential effects of Mycobacterium bovis-derived polar and apolar lipid fractions on bovine innate immune cells. Vet. Res., 2012, 43, 54.
[196]
Verschoor, J.A.; Baird, M.S.; Grooten, J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog. Lipid Res., 2012, 51, 325-339.
[197]
Driessen, N.N.; Ummels, R.; Maaskant, J.J.; Gurcha, S.S.; Besra, G.S.; Ainge, G.D.; Larsen, D.S.; Painter, G.F.; Vandenbroucke-Grauls, C.M.; Geurtsen, J. Role of phosphatidylinositol mannosides in the interaction between mycobacteria and DC-SIGN. Infect. Immun., 2009, 77, 4538-4547.
[198]
Julián, E.; Matas, L.; Alcaide, J.; Luquin, M. Comparison of antibody responses to a potential combination of specific glycolipids and proteins for test sensitivity improvement in tuberculosis serodiagnosis. Clin. Diagn. Lab. Immunol., 2004, 11, 70-76.
[199]
Feng, X.; Yang, X.; Xiu, B.; Qie, S.; Dai, Z.; Chen, K.; Zhao, P.; Zhang, L.; Nicholson, R.A.; Wang, G. IgG, IgM and IgA antibodies against the novel polyprotein in active tuberculosis. BMC Infect. Dis., 2014, 14, 336.
[200]
Das, I.; Padhi, A.; Mukherjee, S.; Dash, D.P.; Kar, S.; Sonawane, A. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice. Nanotechnology, 2017, 28, 165101.
[201]
Singhal, A.; Mori, L.; De Libero, G. T cell recognition of non-peptidic antigens in infectious diseases. Indian J. Med. Res., 2013, 138, 620-631.
[202]
Wu, Y-L.; Ding, Y-P.; Tanaka, Y.; Shen, L-W.; Wei, C-H.; Minato, N.; Zhang, W. γδ T cells and their potential for immunotherapy. Int. J. Biol. Sci., 2014, 10, 119-135.
[203]
Van Crevel, R.; Ottenhoff, T.H.; van der Meer, J.W. Innate immunity to Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2002, 15, 294-309.
[204]
Cowley, S.C.; Hamilton, E.; Frelinger, J.A.; Su, J.; Forman, J.; Elkins, K.L. CD4− CD8− T cells control intracellular bacterial infections both in vitro and in vivo. J. Exp. Med., 2005, 202, 309-319.
[205]
Lawlor, C.; O’Connor, G.; O’Leary, S.; Gallagher, P.J.; Cryan, S-A.; Keane, J.; O’Sullivan, M.P. Treatment of Mycobacterium tuberculosis-Infected Macrophages with poly (Lactic-Co-Glycolic Acid) microparticles drives NFκB and autophagy dependent bacillary killing. PLoS One, 2016, 11, e0149167.
[206]
Sharma, R.; Muttil, P.; Yadav, A.B.; Rath, S.K.; Bajpai, V.K.; Mani, U.; Misra, A. Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J. Antimicrob. Chemother., 2007, 59, 499-506.
[207]
Yadav, A.B.; Muttil, P.; Singh, A.K.; Verma, R.K.; Mohan, M.; Agrawal, A.K.; Verma, A.S.; Sinha, S.K.; Misra, A. Microparticles induce variable levels of activation in macrophages infected with Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 188-196.
[208]
Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G-I.; Makino, K.; Terada, H. Delivery of rifampicin–PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. of Control. Release, 2010, 142, 339-346.
[209]
Roberts, R.A.; Shen, T.; Allen, I.C.; Hasan, W.; DeSimone, J.M.; Ting, J.P. Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano-and microscale particles. PLoS One, 2013, 8, e62115.
[210]
Waeckerle-Men, Y.; Scandella, E.; Uetz-von Allmen, E.; Ludewig, B.; Gillessen, S.; Merkle, H.P.; Gander, B.; Groettrup, M. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly (lactide-co-glycolide) microspheres for immunotherapy. J. Immunol. Methods, 2004, 287, 109-124.
[211]
Getts, D.R.; Terry, R.L.; Getts, M.T.; Deffrasnes, C.; Müller, M.; van Vreden, C.; Ashhurst, T.M.; Chami, B.; McCarthy, D.; Wu, H. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med., 2014. 6, 219ra7- 219ra7.
[212]
Lewis, J.S.; Zaveri, T.D.; Crooks, C.P., II; Keselowsky, B.G. Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials, 2012, 33, 7221-7232.
[213]
Marques, A.P.; Reis, R.L.; Hunt, J.A. Cytokine secretion from mononuclear cells cultured in vitro with starch‐based polymers and poly‐L‐lactide. J. Biomed. Mater. Res. Part A, 2004, 71, 419-429.
[214]
Sharma, R.; Yadav, A.B.; Muttil, P.; Kajal, H.; Misra, A. Inhalable microparticles modify cytokine secretion by lung macrophages of infected mice. Tuberculosis, 2011, 91, 107-110.
[215]
Wang, C.; Muttil, P.; Lu, D.; Beltran-Torres, A.A.; Garcia-Contreras, L.; Hickey, A.J. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. AAPS J., 2009, 11, 139-147.
[216]
Nicolete, R.; dos Santos, D.F.; Faccioli, L.H. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int. Immunopharmacol., 2011, 11, 1557-1563.
[217]
Sharp, F.A.; Ruane, D.; Claass, B.; Creagh, E.; Harris, J.; Malyala, P.; Singh, M.; O’Hagan, D.T.; Pétrilli, V.; Tschopp, J. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci., 2009, 106, 870-875.
[218]
Salminen, A.; Hyttinen, J.M.; Kauppinen, A.; Kaarniranta, K. Context-dependent regulation of autophagy by IKK-NF-κB signaling: Impact on the aging process. Int. J. Cell Biol., 2012, 2012, 1-15.
[219]
van der Vaart, M.; Korbee, C.J.; Lamers, G.E.; Tengeler, A.C.; Hosseini, R.; Haks, M.C.; Ottenhoff, T.H.; Spaink, H.P.; Meijer, A.H. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host Microbe, 2014, 15, 753-767.
[220]
Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004, 119, 753-766.
[221]
Stern, S.T.; Adiseshaiah, P.P.; Crist, R.M. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part. Fibre Toxicol., 2012, 9, 20.
[222]
Sanjuan, M.A.; Dillon, C.P.; Tait, S.W.; Moshiach, S.; Dorsey, F.; Connell, S.; Komatsu, M.; Tanaka, K.; Cleveland, J.L.; Withoff, S. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253-1257.
[223]
Shui, W.; Sheu, L.; Liu, J.; Smart, B.; Petzold, C.J.; Hsieh, T-y.; Pitcher, A.; Keasling, J.D.; Bertozzi, C.R. Membrane proteomics of phagosomes suggests a connection to autophagy. Proc. Natl. Acad. Sci., 2008, 105, 16952-16957.
[224]
Mueller, M.; Reichardt, W.; Koerner, J.; Groettrup, M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J. Control. Release, 2012, 162, 159-166.
[225]
Schlosser, E.; Mueller, M.; Fischer, S.; Basta, S.; Busch, D.H.; Gander, B.; Groettrup, M. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine, 2008, 26, 1626-1637.
[226]
Malyala, P.; Chesko, J.; Ugozzoli, M.; Goodsell, A.; Zhou, F.; Vajdy, M.; O’Hagan, D.T.; Singh, M. The potency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. J. Pharm. Sci., 2008, 97, 1155-1164.
[227]
Pham, N-L.L.; Pewe, L.L.; Fleenor, C.J.; Langlois, R.A.; Legge, K.L.; Badovinac, V.P.; Harty, J.T. Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proc. Natl. Acad. Sci., 2010, 107, 12198-12203.
[228]
Briken, V.; Miller, J.L. Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis. Future Microbiol., 2008, 3, 415-422.
[229]
Yadav, A.B.; Sharma, R.; Muttil, P.; Singh, A.K.; Verma, R.K.; Mohan, M.; Patel, S.K.; Misra, A. Inhalable microparticles containing isoniazid and rifabutin target macrophages and ‘stimulate the phagocyte’to achieve high efficacy. Indian J. Exp. Biol., 2009, 47, 469-474.
[230]
Khulape, S.; Maity, H.; Pathak, D.; Mohan, C.M.; Dey, S. Antigenic validation of recombinant hemagglutinin-neuraminidase protein of Newcastle disease virus expressed in Saccharomyces cerevisiae. Acta Virol., 2015, 59, 240-246.
[231]
Assis-Marques, M.A.; Oliveira, A.F.; Ruas, L.P.; dos Reis, T.F.; Roque-Barreira, M.C.; Coelho, P.S.R. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection. PLoS One, 2015, 10, e0120201.
[232]
King, T.H.; Shanley, C.A.; Guo, Z.; Bellgrau, D.; Rodell, T.; Furney, S.; Henao-Tamayo, M.; Orme, I.M. GI-19007, a novel Saccharomyces cerevisiae-based therapeutic vaccine against tuberculosis. Clin. Vaccine Immunol., 2017, 24, e00245-e17.
[233]
Grover, A.; McLean, J.L.; Troudt, J.M.; Foster, C.; Izzo, L.; Creissen, E.; MacDonald, E.; Troy, A.; Izzo, A.A. Heat killed Saccharomyces cerevisiae as an adjuvant for the induction of vaccine-mediated immunity against infection with Mycobacterium tuberculosis. Vaccine, 2016, 34, 2798-2805.
[234]
Yu, Q.; Wang, X.; Fan, X. A new adjuvant MTOM mediates Mycobacterium tuberculosis subunit vaccine to enhance Th1-type T cell immune responses and IL-2+ T cells. Front. Immunol., 2017, 8, 585.
[235]
Teng, X.; Tian, M.; Li, J.; Tan, S.; Yuan, X.; Yu, Q.; Jing, Y.; Zhang, Z.; Yue, T.; Zhou, L. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine. Hum. Vaccin. Immunother., 2015, 11, 1456-1464.
[236]
Behar, S.M.; Woodworth, J.S.M.; Wu, Y. The next generation: tuberculosis vaccines that elicit protective CD8+ T cells. Expert Rev. Vaccines, 2007, 6, 441-456.
[237]
Lönnroth, K.; Migliori, G.B.; Abubakar, I.; D’Ambrosio, L.; De Vries, G.; Diel, R.; Douglas, P.; Falzon, D.; Gaudreau, M-A.; Goletti, D. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur. Respir. J., 2015, 45, 928-952.
[238]
Fletcher, H.A.; Schrager, L. TB vaccine development and the End TB Strategy: importance and current status. Trans. R. Soc. Trop. Med. Hyg., 2016, 110, 212-218.
[239]
Organization, W.H. Stop TB policy paper: contributing to health
system strengthening: Guiding principles for national tuberculosis
programmes. 2008.
[240]
Organization, W.H. Public-private mix for TB care and control: A toolkit., 2010.
[241]
Organization, W.H. Towards tuberculosis elimination: an action framework for low-incidence countries: WHO; 2014. Report No, WHO/HTM/TB, 2014.
[242]
Bhargava, A.; Pai, M.; Bhargava, M.; Marais, B.J.; Menzies, D. Can social interventions prevent tuberculosis? The Papworth experiment (1918–1943) revisited. Am. J. Respir. Crit. Care Med., 2012, 186, 442-449.
[243]
Organization, W.H. Systematic screening for active tuberculosis: principles and recommendations; World Health Organization, 2013.
[244]
Dara, M.; De Colombani, P.; Petrova-Benedict, R.; Centis, R.; Zellweger, J-P.; Sandgren, A.; Heldal, E.; Sotgiu, G.; Jansen, N.; Bahtijarevic, R. Minimum package for cross-border TB control and care in the WHO European region: A Wolfheze consensus statement. Eur. Respir. J., 2012, 40, 1081-1090.
[245]
de Vries, G.; Baars, H.; Šebek, M.; van Hest, N.; Richardus, J.H. Transmission classification model to determine place and time of infection of tuberculosis cases in an urban area. J. Clin. Microbiol., 2008, 46, 3924-3930.
[246]
Kamper-Jørgensen, Z.; Andersen, A.B.; Kok-Jensen, A.; Bygbjerg, I.C.; Thomsen, V.O.; Lillebaek, T. Characteristics of non-clustered tuberculosis in a low burden country. Tuberculosis, 2012, 92, 226-231.
[247]
Heldal, E.; Döcker, H.; Caugant, D.; Tverdal, A. Pulmonary tuberculosis in Norwegian patients. The role of reactivation, re-infection and primary infection assessed by previous mass screening data and restriction fragment length polymorphism analysis. Int. J. Tuberc. Lung Dis., 2000, 4, 300-307.
[248]
De Vries, G.; Van Hest, N.; Baars, H.; Šebek, M.; Richardus, J.H. Factors associated with the high tuberculosis case rate in an urban area. Int. J. Tuberc. Lung Dis., 2010, 14, 859-865.
[249]
Migliori, G.B.; Centis, R.; D’Ambrosio, L.; Sotgiu, G.; Trunz, B.B.; Godfrey, R.; Tadolini, M.; Besozzi, G.; Sandgren, A.; van der Werf, M.J. Impact and management of TB childhood outbreaks in EU/EEA. Eur. Respir. Soc., 2013, 42, 3532.
[250]
Sotgiu, G.; Trunz, B.B.; Migliori, G.B.; D’Ambrosio, L.; Centis, R.; Godfrey, R.; Tadolini, M.; Besozzi, G.; Sandgren, A.; van der Werf, M.J. Childhood tuberculosis outbreaks in EU/EEA: a systematic review. Eur Respir. Soc., 2013, 42, 1610.
[251]
WHO. Organization, W.H.: Guidelines on the management of latent tuberculosis infection; World Health Organization, 2015.
[252]
Walter, N.D.; Jasmer, R.M.; Grinsdale, J.; Kawamura, L.M.; Hopewell, P.C.; Nahid, P. Reaching the limits of tuberculosis prevention among foreign-born individuals: a tuberculosis-control program perspective. Clin. Infect. Dis., 2008, 46, 103-106.
[253]
Migliori, G.B.; Sotgiu, G.; Gandhi, N.R.; Falzon, D.; DeRiemer, K.; Centis, R.; Hollm-Delgado, M-G.; Palmero, D.; Pérez-Guzmán, C.; Vargas, M.H.; D’Ambrosio, L.; Spanevello, A.; Bauer, M.; Chan, E.D.; Schaaf, H.S.; Keshavjee, S.; Holtz, T.H.; Menzies, D. Drug resistance beyond extensively drug-resistant tuberculosis: individual patient data meta-analysis. Eur. Respir. J., 2013, 42, 169-179.
[254]
Fears, R.; Kaufmann, S.; Ter Meulen, V.; Zumla, A. Drug-resistant tuberculosis in the European Union: opportunities and challenges for control. Tuberculosis, 2010, 90, 182-187.
[255]
Bibi, H.; Weiler-Ravell, D.; Shoseyov, D.; Feigin, I.; Arbelli, Y.; Chemtob, D. Compliance to treatment of latent tuberculosis infection in a region of Israel. Isr. Med. Assoc. J., 2002, 4, 13-16.
[256]
Nathanson, E.; Nunn, P.; Uplekar, M.; Floyd, K.; Jaramillo, E.; Lönnroth, K.; Weil, D.; Raviglione, M. MDR tuberculosis-critical steps for prevention and control. N. Engl. J. Med., 2010, 363, 1050-1058.
[257]
De Vries, G.; Aldridge, R.; Cayla, J.; Haas, W.; Sandgren, A.; van Hest, N.; Abubakar, I. Epidemiology of tuberculosis in big cities of
the European Union and European Economic Area countries. 2014. Euro Surveill, 6, 19(9). pii: 20726.
[258]
Ahuja, S.D.; Ashkin, D.; Avendano, M.; Banerjee, R.; Bauer, M.; Bayona, J.N.; Becerra, M.C.; Benedetti, A.; Burgos, M.; Centis, R. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med., 2012, 9, e1001300.
[259]
Falzon, D.; Gandhi, N.; Migliori, G.; Sotgiu, G.; Cox, H.; Holtz, T.; Hollm-Delgado, M.; Keshavjee, S.; DeRiemer, K.; Centis, R. Collaborative Group for Meta-Analysis of Individual Patient Data in MT. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur. Respir. J., 2013, 42, 156-168.
[260]
Skripconoka, V.; Danilovits, M.; Pehme, L.; Tomson, T.; Skenders, G.; Kummik, T.; Cirule, A.; Leimane, V.; Kurve, A.; Levina, K. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J., 2013, 41, 1393-1400.
[261]
Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S-K.; Shim, T.S. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366, 2151-2160.
[262]
Diacon, A.H.; Dawson, R.; von Groote-Bidlingmaier, F.; Symons, G.; Venter, A.; Donald, P.R.; van Niekerk, C.; Everitt, D.; Winter, H.; Becker, P. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: A randomised trial. Lancet, 2012, 380, 986-993.
[263]
Tiberi, S.; De Lorenzo, S.; Centis, R.; Viggiani, P.; D’Ambrosio, L.; Migliori, G.B. Bedaquiline in MDR/XDR-TB cases: first experience on compassionate use. Eur. Respir. J., 2014, 43, 289-292.
[264]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12, 388.
[265]
Organization, W.H. Standards and benchmarks for tuberculosis
surveillance and vital registration systems: Checklist and user
guide. 2014.
[266]
Lönnroth, K.; Roglic, G.; Harries, A.D. Improving tuberculosis prevention and care through addressing the global diabetes epidemic: from evidence to policy and practice. Lancet Diabetes Endocrinol., 2014, 2, 730-739.
[267]
Frick, M. 2015 report on tuberculosis research funding trends, 2005–2014: A decade of data; Treatment Action Group: New York, 2015.
[268]
Evans, T.G.; Brennan, M.J.; Barker, L.; Thole, J. Preventive vaccines for tuberculosis. Vaccine, 2013, 31, B223-B226.
[269]
Dara, M.; Acosta, C.D.; Rusovich, V.; Zellweger, J.P.; Centis, R.; Migliori, G.B. Bacille Calmette-Guerin vaccination: The current situation in Europe. Eur Respir. Soc., 2014, 43, 24-35.
[270]
Migliori, G.B.; Sotgiu, G. Treatment of tuberculosis: have we turned the corner? Lancet, 2012, 380, 955-957.