[1]
Chan RS, Woo J. Prevention of overweight and obesity: how effective is the current public health approach. Int J Environ Res Public Health 2010; 7(3): 765-83.
[2]
Nammi S, Koka S, Chinnala KM, Boini KM. Obesity: An overview on its current perspectives and treatment options. Nutr J 2004; 3: 3.
[3]
Hess ME, Bruning JC. The fat mass and obesity-associated (FTO) gene: Obesity and beyond? Biochim Biophys Acta 2014; 1842(10): 2039-47.
[4]
Lerma-Cabrera JM, Carvajal F, Lopez-Legarrea P. Food addiction as a new piece of the obesity framework. Nutr J 2016; 15: 5.
[5]
Saldaña-Alvarez Y, Salas-Martínez MG, García-Ortiz H, et al. Gender-dependent association of FTO polymorphisms with body mass index in Mexicans. PLoS One 2016; 11(1)e0145984
[6]
Jiao Y, Zhang J, Lu L, Xu J, Qin L. The Fto gene regulates the proliferation and differentiation of pre-adipocytes in vitro. Nutrients 2016; 8(2): 102.
[7]
Ronkainen J, Huusko TJ, Soininen R, et al. Fat mass- and obesity-associated gene Fto affects the dietary response in mouse white adipose tissue. Sci Rep 2015; 5: 9233.
[8]
Harbron J, van der Merwe L, Zaahl MG, Kotze MJ, Senekal M. Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients 2014; 6(8): 3130-52.
[9]
Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Med 2011; 9: 71.
[10]
Hotta K, Nakata Y, Matsuo T, et al. Variations in the FTO gene are associated with severe obesity in the Japanese. J Hum Genet 2008; 53(6): 546-53.
[11]
Albuquerque D, Nóbrega C, Manco L. Association of FTO polymorphisms with obesity and obesity-related outcomes in Portuguese children. PLoS One 2013; 8(1)e54370
[12]
Grant SF, Li M, Bradfield JP, et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One 2008; 3(3)e1746
[13]
Peeters A, Beckers S, Verrijken A, et al. Variants in the FTO gene are associated with common obesity in the Belgian population. Mol Genet Metab 2008; 93(4): 481-4.
[14]
Pasupuleti SK, Katari V, Lokanathan S, et al. Novel frame shift mutations (‘A’ deletion) observed in exon 9 of Wilms’ tumor (WT1) gene in a patient reported with glomerulosclerosis. Gene 2014; 546(1): 63-7.
[15]
Bhurosy T, Jeewon R. Overweight and obesity epidemic in developing countries: A problem with diet, physical activity, or socioeconomic status? ScientificWorldJournal 2014; 2014964236
[17]
James WP. What are the health risks? The medical consequences of obesity and its health risks. Exp Clin Endocrinol Diabetes 1998; 106(Suppl. 2): 1-6.
[18]
Pi-Sunyer FX. The medical risks of obesity. Obes Surg 2002; 12(Suppl. 1): 6S-11S.
[19]
Pi-Sunyer X. The medical risks of obesity. Postgrad Med 2009; 121(6): 21-33.
[20]
Van Gaal LF, De Leeuw IH. Human obesity: a medical assessment of health risks. Int J Risk Saf Med 1995; 7(2): 121-34.
[21]
Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet 2010; 26(6): 266-74.
[22]
Ramos AV, Bastos-Rodrigues L, Resende BA, et al. The contribution of FTO and UCP-1 SNPs to extreme obesity, diabetes and cardiovascular risk in Brazilian individuals. BMC Med Genet 2012; 13: 101.
[23]
Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem 2011; 286(3): 2155-70.
[24]
Stratigopoulos G, Padilla SL, LeDuc CA, et al. Regulation of Fto/Ftm gene expression in mice and humans. Am J Physiol Regul Integr Comp Physiol 2008; 294(4): R1185-96.
[25]
Fei X, Qin Z, Liang Z. Contribution of CDP/Cux, a transcription factor, to cell cycle progression. Acta Biochim Biophys Sin (Shanghai) 2007; 39(12): 923-30.
[26]
Mailly F, Bérubé G, Harada R, Mao PL, Phillips S, Nepveu A. The human cut homeodomain protein can repress gene expression by two distinct mechanisms: active repression and competition for binding site occupancy. Mol Cell Biol 1996; 16(10): 5346-57.