[1]
Chen, J.; Wei, Y.; He, J.; Cui, G.; Zhu, Y.; Lu, C.; Ding, Y.; Xue, R.; Bai, L.; Uede, T. Natural killer T cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota. Sci. Rep., 2014, 4, 7259-7259.
[2]
Tiegs, G.; Hentschel, J.; Wendel, A.A. T cell-dependent experimental liver injury in mice inducible by concanavalin A. J. Clin. Invest., 1992, 90(1), 196-203.
[3]
Noth, R.; Lange-Grumfeld, J.; Stüber, E.; Kruse, M.L.; Ellrichmann, M.; Häsler, R.; Hampe, J.; Bewig, B.; Rosenstiel, P.; Schreiber, S. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model. BMC Gastroenterol., 2011, 11(1), 109-109.
[4]
De, M.S.; Rychlicki, C.; Agostinelli, L.; Saccomanno, S.; Candelaresi, C.; Trozzi, L.; Mingarelli, E.; Facinelli, B.; Magi, G.; Palmieri, C. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology, 2014, 59(5), 1738-1749.
[5]
Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Gou, Y.K.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15718-15723.
[6]
Cryan, J.F.; O’Mahony, S.M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol. Motil., 2011, 23(3), 187-192.
[7]
Round, J.L.; O’Connell, R.M.; Mazmanian, S.K. Coordination of tolerogenic immune responses by the commensal microbiota. J. Autoimmun., 2010, 34(3), J220-J225.
[8]
Celaj, S.; Gleeson, M.W.; Deng, J.; O’Toole, G.A.; Hampton, T.H.; Toft, M.F.; Morrison, H.G.; Sogin, M.L.; Putra, J.; Suriawinata, A.A. The microbiota regulates susceptibility to Fas-mediated acute hepatic injury. Lab. Invest., 2014, 94(9), 938-949.
[9]
Schnabl, B.; Brenner, D.A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology, 2014, 146(6), 1513-1524.
[10]
Wu, X.; Sun, R.; Chen, Y.; Zheng, X.; Bai, L.; Lian, Z.; Wei, H.; Tian, Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology, 2015, 62(1), 253-264.
[11]
Antunes, L.C.; Han, J.; Ferreira, R.B.; Lolić, P.; Borchers, C.H.; Finlay, B.B. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob. Agents Chemother., 2011, 55(4), 1494-1503.
[12]
Antonopoulos, D.A.; Huse, S.M.; Morrison, H.G.; Schmidt, T.M.; Sogin, M.L.; Young, V.B. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Gut Microbes, 2010, 77(4), 2367-2375.
[13]
Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res., 2011, 39(Database issue), 561-568.
[14]
Thomas, P.D.; Kejariwal, A.; Campbell, M.J.; Mi, H.; Diemer, K.; Guo, N.; Ladunga, I.; Ulitskylazareva, B.; Muruganujan, A.; Rabkin, S. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res., 2003, 31(1), 334-341.
[15]
Sviridov, D.; Louise Pyle, A.; Fidge, N. Identification of a sequence of apolipoprotein A-I associated with the efflux of intracellular cholesterol to human serum and apolipoprotein A-I containing particles†. Biochemistry, 1996, 35(1), 189.
[16]
Luk, J.M.; Lam, C.T.; Siu, A.F.; Lam, B.Y.; Ng, I.O.; Hu, M.Y.; Che, C.M.; Fan, S.T. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics, 2006, 6(3), 1049-1057.
[17]
Sunden, S.L.; Renduchintala, M.S.; Park, E.I.; Miklasz, S.D.; Garrow, T.A. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys., 1997, 345(1), 171-174.
[18]
Renes, J.; Mariman, E. Application of proteomics technology in adipocyte biology. Mol. BioSys., 2013, 9(6), 1076-1091.
[19]
Ivanov, I.I. Frutos, Rde, L.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4), 337-349.
[20]
Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, 331(6015), 337-341.
[21]
Fuhrer, A.; Sprenger, N.; Kurakevich, E.; Borsig, L.; Chassard, C.; Hennet, T. Milk sialyllactose influences colitis in mice through selective intestinal bacterial colonization. J. Exp. Med., 2010, 207(13), 2843.
[22]
Berer, K.; Mues, M.; Koutrolos, M.; Rasbi, Z.A.; Boziki, M.; Johner, C.; Wekerle, H.; Krishnamoorthy, G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011, 479(7374), 538.
[23]
Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; Mcgilvray, I.D.; Allard, J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, 2013, 58(1), 120-127.
[24]
Sandler, N.G.; Koh, C.; Roque, A.; Eccleston, J.L.; Siegel, R.B.; Demino, M.; Kleiner, D.E.; Deeks, S.G.; Liang, T.J.; Heller, T. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterol., 2011, 141(4), 1220-1230.e3.
[25]
French, S.W. Mechanisms of alcoholic liver injury. Can. J. Gastroenterol., 2000, 14(4), 327-332.
[26]
Dong, Z.; Wei, H.; Sun, R.; Tian, Z. The roles of innate immune cells in liver injury and regeneration. Cell. Mol. Immunol., 2007, 4(4), 241-252.
[27]
Li, Y.T.; Li, W.; Yu, C.; Chen, Y.B.; Wang, H.Y.; Wu, Z.W.; Li, L.J. Effects of gut microflora on hepatic damage after acute liver injury in rats. J. Trauma, 2010, 68(1), 76.
[28]
Zhang, Z.; Zhai, H.; Geng, J.; Yu, R.; Ren, H.; Fan, H.; Shi, P. Large-scale survey of gut microbiota associated with MHE via 16S rRNA-based pyrosequencing. Am. J. Gastroenterol., 2013, 108(10), 1601-1611.
[29]
Workman, P.; Burrows, F.; Neckers, L.; Rosen, N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci., 2007, 1113(1), 202-216.
[30]
Li, G.; Cai, M.; Fu, D.; Chen, K.; Sun, M.; Cai, Z.; Cheng, B. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 2012, 30(6), 1481-1490.
[31]
Cawthorn, T.R.; Moreno, J.C.; Dharsee, M.; Tran-Thanh, D.; Ackloo, S.; Zhu, P.H.; Sardana, G.; Chen, J.; Kupchak, P.; Jacks, L.M. Proteomic analyses reveal high expression of decorin and endoplasmin (HSP90B1) are associated with breast cancer metastasis and decreased survival. PLoS One, 2012, 7(2), e30992.
[32]
Zhu, X.D.; Li, C.L.; Lang, Z.W.; Gao, G.F. Significant correlation between expression level of HSP gp96 and progression of hepatitis B virus induced diseases. World J. Gastroenterol., 2004, 10(8), 1141-1145.
[33]
Mckeever, M.P.; Weir, D.G.; Molloy, A.; Scott, J.M. Betaine-homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin. Sci. , 1991, 81(4), 551-556.
[34]
Pellanda, H. Betaine homocysteine methyltransferase (BHMT)-dependent remethylation pathway in human healthy and tumoral liver. Clin. Chem. Lab. Med., 2013, 51(3), 617-621.
[35]
Antoine, D.J.; Dear, J.W.; Starkey, L.P.; Vivien, P.; Judy, C.; Moyra, M.; Thanacoody, R.H.; Gray, A.J.; Webb, D.J.; Moggs, J.G. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology, 2013, 58(2), 777-787.
[36]
Ma, H.; Ning, J.; Jin, X.; Mao, C.; Bu, X.; Wang, M.; Liu, H.; Wang, K.; Lausted, C.; Hood, L. Betaine Homocysteine Methyltransferase (BHMT) as a specific and sensitive blood marker for acute liver injury. Biomarkers, 2014, 19(7), 578-584.
[37]
Shinohara, M.; Ji, C.N. Differences in betaine-homocysteine methyltransferase expression, endoplasmic reticulum stress response, and liver injury between alcohol-fed mice and rats. Hepatology, 2010, 51(3), 796-805.
[38]
Norton, P.A.; Gong, Q.; Mehta, A.S.; Lu, X.; Block, T.M. Hepatitis B virus-mediated changes of apolipoprotein mRNA abundance in cultured hepatoma cells. J. Virol., 2003, 77(9), 5503-5506.
[39]
Wang, P.; Mai, C.; Wei, Y.L.; Zhao, J.J.; Hu, Y.M.; Zeng, Z.L.; Yang, J.; Lu, W.H.; Xu, R.H.; Huang, P. Decreased expression of the mitochondrial metabolic enzyme aconitase (ACO2) is associated with poor prognosis in gastric cancer. Med. Oncol., 2013, 30(2), 1-9.
[40]
Edgar, A.J.; Polak, J.M. Molecular cloning of the human and murine 2-amino-3-ketobutyrate coenzyme A ligase cDNAs. FEBS J., 2010, 267(6), 1805-1812.
[41]
Fujii, H. Nuclear translocation of 2-amino-3-ketobutyrate coenzyme a ligase by cold and osmotic stress. Cell Stress Chaperones, 2007, 12(2), 186-191.