[1]
Chen, W.Q.; Zheng, R.S.; Zhang, S.W. Report of cancer incidence and mortality in China 2012. Chin. Cancer, 2016, 2(7), 61-61.
[2]
Moriguchi, M.; Umemura, A.; Itoh, Y. Current status and future prospects of chemotherapy for advanced hepatocellular carcinoma. Clin. J. Gastroenterol., 2016, 9(4), 1-7.
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. Cancer J. Clin., 2015, 64(1), 9-29.
[4]
Postow, M.A.; Harding, J.; Wolchok, J.D. Targeting immune checkpoints: Releasing the restraints on anti-tumor immunity for patients with melanoma. Cancer J., 2012, 18(2), 153-159.
[5]
Zhou, F.; Teng, F.; Deng, P.; Meng, N.; Song, Z.; Feng, R. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer. Agents Med. Chem., 2018, 17(14), 1884-1897.
[6]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbe, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[7]
Marra, A.; Ferrone, C.; Fusciello, C.; Scognamiglio, G.; Ferrone, S.; Pepe, S.; Perri, F.; Sabbatino, F. Translational research in cutaneous melanoma: New therapeutic perspectives. Anticancer. Agents Med. Chem., 2017, 18(2), 166-181.
[8]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway
blockade for cancer therapy: Mechanisms, response biomarkers,
and combinations. Sci. Transl. Med., 2016, 8(328), 328rv4-
328rv4.
[9]
Helissey, C.; Vicier, C.; Champiat, S. The development of immunotherapy in older adults: New treatments, new toxicities? J. Geriatr. Oncol., 2016, 7(5), 325-333.
[10]
Bang, Y-J.; Chung, H-C.; Shankaran, V.; Geva, R.; Catenacci, D.V.T.; Gupta, S.; Eder, J.P.; Berger, R.; Gonzalez, E.J.; Ray, A. Relationship between PD-L1 expression and clinical outcomes in
patients with advanced gastric cancer treated with the anti-PD-1
monoclonal antibody pembrolizumab (MK-3475) in KEYNOTE-
012. ASCO. Ann. Meet. Proc, 2015, 33, 4001.
[11]
Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Matsumura, N.; Abiko, K.; Baba, T.; Yamaguchi, K.; Ueda, A. Durable
tumor remission in patients with platinum-resistant ovarian
cancer receiving nivolumab. Ann. Meet. Proc, 2015, 5570.
[12]
Emens, L.A.; Braiteh, F.S.; Cassier, P.; Delord, J.P.; Eder, J.P.; Fasso, M.; Xiao, Y.; Wang, Y.; Molinero, L.; Chen, D.S. Abstract 2859: Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic Triple-Negative Breast Cancer (TNBC). Cancer Res., 2015, 75(9)(Suppl.), 2589.
[13]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; Biedrzycki, B.; Donehower, R.C.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Duffy, S.M.; Goldberg, R.M.; de la Chapelle, A.; Koshiji, M.; Bhaijee, F.; Huebner, T.; Hruban, R.H.; Wood, L.D.; Cuka, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Zhou, S.; Cornish, T.C.; Taube, J.M.; Anders, R.A.; Eshleman, J.R.; Vogelstein, B.; Diaz, L.A., Jr PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med., 2015, 372(26), 2509-2520.
[14]
Elkhoueiry, A.B.; Melero, I.; Crocenzi, T.S.; Welling, T.H.; Yau, T.C.; Yeo, W.; Chopra, A.; Grosso, J.; Lang, L.; Anderson, J. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. J. Clin. Oncol., 2015, 33(18)(Suppl.)
[15]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J. PD-1 Blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[16]
Prieto, J.; Melero, I.; Sangro, B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(12), 681-700.
[17]
Poisson, J.; Lemoinne, S.; Boulanger, C.; Durand, F.; Moreau, R.; Valla, D.; Rautou, P.E. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol., 2017, 66(1), 212-227.
[18]
Knolle, P.A.; Uhrig, A.; Hegenbarth, S.; Löser, E.; Schmitt, E.; Gerken, G.; Lohse, A.W. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin. Exp. Immunol., 1998, 114(3), 427-433.
[19]
Katz, S.C.; Pillarisetty, V.G.; Bleier, J.I.; Shah, A.B.; Dematteo, R.P. Liver sinusoidal endothelial cells are insufficient to activate T cells. J. Immunol., 2004, 173(1), 230-235.
[20]
Limmer, A.; Ohl, J.; Kurts, C.; Ljunggren, H.G.; Reiss, Y.; Groettrup, M.; Momburg, F.; Arnold, B.; Knolle, P.A. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med., 2000, 6(12), 1348-1354.
[21]
Diehl, L.; Schurich, A.; Grochtmann, R.; Hegenbarth, S.; Chen, L.; Knolle, P.A. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology, 2008, 47(1), 296-305.
[22]
Carambia, A.; Freund, B.; Schwinge, D.; Heine, M.; Laschtowitz, A.; Huber, S.; Wraith, D.C.; Korn, T.; Schramm, C.; Lohse, A.W.; Heeren, J.; Herkel, J. TGF-beta-dependent induction of CD4(+)CD25(+)Foxp3(+) Tregs by liver sinusoidal endothelial cells. J. Hepatol., 2014, 61(3), 594-599.
[23]
Neumann, K.; Rudolph, C.; Neumann, C.; Janke, M.; Amsen, D.; Scheffold, A. Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway. Eur. J. Immunol., 2015, 45(7), 2008-2016.
[24]
Weiskirchen, R.; Tacke, F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr., 2014, 3(6), 344-363.
[25]
Chang, J.; Hisamatsu, T.; Shimamura, K.; Yoneno, K.; Adachi, M.; Naruse, H.; Igarashi, T.; Higuchi, H.; Matsuoka, K.; Kitazume, M.T.; Ando, S.; Kamada, N.; Kanai, T.; Hibi, T. Activated hepatic stellate cells mediate the differentiation of macrophages. Hepatol. Res., 2013, 43(6), 658-669.
[26]
Schildberg, F.A.; Wojtalla, A.; Siegmund, S.V.; Endl, E.; Diehl, L.; Abdullah, Z.; Kurts, C.; Knolle, P.A. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology, 2011, 54(1), 262-272.
[27]
Holt, A.P.; Haughton, E.L.; Lalor, P.F.; Filer, A.; Buckley, C.D.; Adams, D.H. Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology, 2009, 136(2), 705-714.
[28]
Maher, J.J. Interactions between hepatic stellate cells and the immune system. Semin. Liver Dis., 2001, 21(3), 417-426.
[29]
Yang, H.R.; Chou, H.S.; Gu, X.; Wang, L.; Brown, K.E.; Fung, J.J.; Lu, L.; Qian, S. Mechanistic insights into immunomodulation by hepatic stellate cells in mice: A critical role of interferon-gamma signaling. Hepatology, 2009, 50(6), 1981-1991.
[30]
Yu, M.C.; Chen, C.H.; Liang, X.; Wang, L.; Gandhi, C.R.; Fung, J.J.; Lu, L.; Qian, S. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology, 2004, 40(6), 1312-1321.
[31]
Heymann, F.; Tacke, F. Immunology in the liver - from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(2), 88.
[32]
Tacke, F.; Zimmermann, H.W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol., 2014, 60(5), 1090-1096.
[33]
Garcia-Rubino, M.E.; Lozano-Lopez, C.; Campos, J.M. Inhibitors of cancer stem cells. Anticancer. Agents Med. Chem., 2016, 16(10), 1230-1239.
[34]
Heymann, F.; Peusquens, J.; Ludwig‐Portugall, I.; Kohlhepp, M.; Ergen, C.; Niemietz, P.; Martin, C.; Rooijen, N.V.; Ochando, J.C.; Randolph, G.J. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology, 2015, 62(1), 279-291.
[35]
Knoll, P.; Schlaak, J.; Uhrig, A.; Kempf, P.; Gerken, G. Human Kupffer cells secrete IL-10 in response to Lipopolysaccharide (LPS) challenge. J. Hepatol., 1995, 22(2), 226-229.
[36]
Callery, M.P.; Mangino, M.J.; Flye, M.W. Arginine-specific suppression of mixed lymphocyte culture reactivity by Kupffer cells--a basis of portal venous tolerance. Transplantation, 1991, 51(5), 1076-1080.
[37]
Li, S.; Yang, F.; Ren, X. Immunotherapy for hepatocellular carcinoma. Drug Discov. Ther., 2015, 9(5), 363-371.
[38]
Harding, J.J.; El, D.I.; Aboualfa, G.K. Immunotherapy in hepatocellular carcinoma: Primed to make a difference? Cancer, 2016, 122(3), 367-377.
[39]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[40]
Wen, X.; Long, F.J.; Xiao, Z.D.; Dan, Y.Z.; Jia, P.P.; Mao, L.X.; Bing, J.L.; Chang, J.W.; Jing, H.Z.; Qi, Z. PD-1/PD-L1 signal pathway participates in HCV F protein-induced T cell dysfunction in chronic HCV infection. Immunol. Res., 2016, 64(2), 1-12.
[41]
Schurich, A.; Khanna, P.; Lopes, A.R.; Han, K.J.; Peppa, D.; Micco, L.; Nebbia, G.; Kennedy, P.T.; Geretti, A.M.; Dusheiko, G. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology, 2011, 53(5), 1494-1503.
[42]
Bengsch, B.; Martin, B.; Thimme, R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol., 2014, 61(6), 1212-1219.
[43]
Tzeng, H.T.; Tsai, H.F.; Liao, H.J.; Lin, Y.J.; Chen, L.; Chen, P.J.; Hsu, P.N. PD-1 Blockage reverses immune dysfunction and hepatitis b viral persistence in a mouse animal model. PLoS One, 2012, 7(6), 76-77.
[44]
Ye, B.; Liu, X.; Li, X.; Kong, H.; Tian, L.; Chen, Y. T-cell exhaustion in chronic hepatitis B infection: Current knowledge and clinical significance. Cell Death Dis., 2015, 6(3), e1694.
[45]
Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.S.; Laurent, A.; Azoulay, D.; Lafdil, F. Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship with clinical and pathological features. Hepatology (Baltimore, Md.), 2016, 64(6), 2038-2046.
[46]
Cariani, E.; Pilli, M.; Zerbini, A.; Rota, C.; Olivani, A.; Pelosi, G.; Schianchi, C.; Soliani, P.; Campanini, N.; Silini, E.M. Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One, 2012, 7(3), e32493.
[47]
Zhen, Z.; Feng, S.; Lin, Z.; Zhang, M.N.; Yan, C.; Chang, X.J.; Lu, Y.Y.; Bai, W.L.; Qu, J.H.; Wang, C.P. Upregulation of Circulating PD-L1/PD-1 Is Associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS One, 2011, 6(9), e23621.
[48]
Gao, Q.; Wang, X.Y.; Qiu, S.J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.Z. Shi, Y.H.; Xiao, Y.S.; Xu, Y. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res., 2009, 15(3), 971-979.
[49]
Wu, K.; Kryczek, I.; Chen, L.; Zou, W.; Welling, T.H. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/PD-1 interactions. Cancer Res., 2009, 69(20), 8067-8075.
[50]
Kuang, D.M.; Zhao, Q.; Peng, C.; Xu, J.; Zhang, J.P.; Wu, C.; Zheng, L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med., 2009, 206(6), 1327-1337.
[51]
Kalathil, S.; Lugade, A.A.; Miller, A.; Iyer, R.; Thanavala, Y. Higher frequencies of GARP+ CTLA-4+ Foxp3+ T regulatory cells and myeloid-derivedsuppressor cells in hepatocellular carcinoma patients are associated with impaired T cellfunctionality. Cancer Res., 2013, 73(8), 2435-2444.
[52]
Wu, H.; Chen, P.; Liao, R.; Li, Y.W.; Yi, Y.; Wang, J.X.; Cai, X.Y.; He, H.W.; Jin, J.J.; Cheng, Y.F.; Fan, J.; Sun, J.; Qiu, S.J. Intratumoral regulatory T cells with higher prevalence and more suppressive activity in hepatocellular carcinoma patients. J. Gastroenterol. Hepatol., 2013, 28(9), 1555-1564.
[53]
Pitt, J.M.; Vetizou, M.; Daillere, R.; Roberti, M.P.; Yamazaki, T.; Routy, B.; Lepage, P.; Boneca, I.G.; Chamaillard, M.; Kroemer, G.; Zitvogel, L. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity, 2016, 44(6), 1255-1269.
[54]
Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell, 2015, 161(2), 205-214.
[55]
Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Inarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; Lasarte, J.J.; Perez-Gracia, J.L.; Melero, I.; Prieto, J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol., 2013, 59(1), 81-88.
[56]
Hanson, D.C.; Canniff, P.C.; Primiano, M.J.; Donovan, C.B.; Gardner, J.P.; Natoli, E.J.; Morgan, R.W.; Mather, R.J.; Singleton, D.H.; Hermes, P.A. Preclinical in vitro characterization of anti-CTLA4 therapeutic antibody CP-675,206. Cancer Res., 2004, 64(1), 877.
[57]
Canniff, P.C.; Donovan, C.B.; Burkwit, J.J.; Bruns, M.J.; Bedian, V.; Bernstein, S.H.; Hanson, D.C. CP-675,206 anti-CTLA4 antibody clinical candidate enhances IL-2 production in cancer patient T cells in vitro regardless of tumor type or stage of disease. Cancer Res., 2004, 64(1), 164.
[58]
Walker, L.S.; Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol., 2011, 11(12), 852-863.
[59]
Cominanduix, B.; Escuinordinas, H.; Ibarrondo, F.J. Tremelimumab: Research and clinical development. Oncotarget Ther, 2016, 9, 1767-1776.
[60]
Ribas, A.; Kefford, R.; Marshall, M.A.; Punt, C.J.; Haanen, J.B.; Marmol, M.; Garbe, C.; Gogas, H.; Schachter, J.; Linette, G.; Lorigan, P.; Kendra, K.L.; Maio, M.; Trefzer, U.; Smylie, M.; McArthur, G.A.; Dreno, B.; Nathan, P.D.; Mackiewicz, J.; Kirkwood, J.M.; Gomez-Navarro, J.; Huang, B.; Pavlov, D.; Hauschild, A. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol., 2013, 31(5), 616-622.
[61]
Ascierto, P.A.; Pa, A. Is there still a role for tremelimumab in the treatment of cancer? Transl. Cancer Res., 2013, 2(1), 48-50.
[62]
Zhu, A.X.; Abrams, T.A.; Miksad, R.; Blaszkowsky, L.S.; Meyerhardt, J.A.; Zheng, H.; Muzikansky, A.; Clark, J.W.; Kwak, E.L.; Schrag, D.; Jors, K.R.; Fuchs, C.S.; Iafrate, A.J.; Borger, D.R.; Ryan, D.P. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer, 2011, 117(22), 5094-5102.
[63]
Park, J.W.; Finn, R.S.; Kim, J.S.; Karwal, M.; Li, R.K.; Ismail, F.; Thomas, M.; Harris, R.; Baudelet, C.; Walters, I.; Raoul, J.L. Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res., 2011, 17(7), 1973-1983.
[64]
Therasse, P.; Arbuck, S.G.; Eisenhauer, E.A.; Wanders, J.; Kaplan, R.S.; Rubinstein, L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A.T.; Christian, M.C.; Gwyther, S.G. New guidelines to evaluate the response to treatment in solid tumors. J. Natl. Cancer Inst., 2000, 92(3), 205-216.
[65]
Wolchok, J.D.; Hoos, A.; O’Day, S.; Weber, J.S.; Hamid, O.; Lebbe, C.; Maio, M.; Binder, M.; Bohnsack, O.; Nichol, G.; Humphrey, R.; Hodi, F.S. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res., 2009, 15(23), 7412-7420.
[66]
Quezada, S.A.; Peggs, K.S. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br. J. Cancer, 2013, 108(8), 1560-1565.
[67]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[68]
Segal, N.H.; Antonia, S.J.; Brahmer, J.R.; Maio, M.; Blakehaskins, A.; Li, X.; Vasselli, J.; Ibrahim, R.A.; Lutzky, J.; Khleif, S. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J. Clin. Oncol., 2014, 32, 3002.
[69]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[70]
Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med., 2015, 373(1), 23-34.
[71]
Ngiow, S.F.; Young, A.; Jacquelot, N.; Yamazaki, T.; Enot, D.; Zitvogel, L.; Smyth, M.J. A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1. Cancer Res., 2015, 75(18), 3800-3811.
[72]
Penaloza-MacMaster, P.; Kamphorst, A.O.; Wieland, A.; Araki, K.; Iyer, S.S.; West, E.E.; O’Mara, L.; Yang, S.; Konieczny, B.T.; Sharpe, A.H.; Freeman, G.J.; Rudensky, A.Y.; Ahmed, R. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J. Exp. Med., 2014, 211(9), 1905-1918.
[73]
Onishi, H.; Morisaki, T.; Katano, M. Immunotherapy approaches targeting regulatory T-cells. Anticancer Res., 2012, 32(3), 997-1003.
[74]
Coussens, L.M.; Zitvogel, L.; Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: A magic bullet? Science, 2013, 339(6117), 286-291.
[75]
Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr. Opin. Immunol., 2014, 27, 16-25.
[76]
Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol., 2007, 8(3), 239-245.
[77]
Bald, T.; Landsberg, J.; Lopez-Ramos, D.; Renn, M.; Glodde, N.; Jansen, P.; Gaffal, E.; Steitz, J.; Tolba, R.; Kalinke, U.; Limmer, A.; Jonsson, G.; Holzel, M.; Tuting, T. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov., 2014, 4(6), 674-687.
[78]
Tarhini, A.A.; Cherian, J.; Moschos, S.J.; Tawbi, H.A.; Shuai, Y.; Gooding, W.E.; Sander, C.; Kirkwood, J.M. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol., 2012, 30(3), 322-328.
[79]
Chen, L.T.; Chen, M.F.; Li, L.A.; Lee, P.H.; Jeng, L.B.; Lin, D.Y.; Wu, C.C.; Mok, K.T.; Chen, C.L.; Lee, W.C.; Chau, G.Y.; Chen, Y.S.; Lui, W.Y.; Hsiao, C.F.; Whang-Peng, J.; Chen, P.J. Long-term results of a randomized, observation-controlled, phase III trial of adjuvant interferon Alfa-2b in hepatocellular carcinoma after curative resection. Ann. Surg., 2012, 255(1), 8-17.
[80]
Arina, A.; Corrales, L.; Bronte, V. Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Semin. Immunol., 2016, 28(1), 54-63.
[81]
Johansson, A.; Hamzah, J.; Payne, C.J.; Ganss, R. Tumor-targeted TNFalpha stabilizes tumor vessels and enhances active immunotherapy. Proc. Natl. Acad. Sci. USA, 2012, 109(20), 7841-7846.
[82]
Chauhan, V.P.; Jain, R.K. Strategies for advancing cancer nanomedicine. Nat. Mater., 2013, 12(11), 958-962.
[83]
Salnikova, O.; Breuhahn, K.; Hartmann, N.; Schmidt, J.; Ryschich, E. Endothelial plasticity governs the site-specific leukocyte recruitment in hepatocellular cancer. Int. J. Cancer, 2013, 133(10), 2372-2382.
[84]
Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F.; Leblanc, P.; Munn, L.L.; Huang, P.; Duda, D.G.; Fukumura, D.; Jain, R.K.; Poznansky, M.C. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17561-17566.
[85]
Nadal, R.; Amin, A.; Geynisman, D.M.; Voss, M.H.; Weinstock, M.; Doyle, J.; Zhang, Z.; Viudez, A.; Plimack, E.R.; McDermott, D.F.; Motzer, R.; Rini, B.; Hammers, H.J. Safety and clinical activity of Vascular Endothelial Growth Factor Receptor (VEGFR)-tyrosine kinase inhibitors after programmed cell death 1 inhibitor treatment in patients with metastatic clear cell renal cell carcinoma. Ann. Oncol., 2016, 27(7), 1304-1311.
[86]
Amin, A.; Plimack, E.R.; Infante, J.R.; Ernstoff, M.S.; Rini, B.I.; McDermott, D.F.; Knox, J.J.; Pal, S.K.; Voss, M.H.; Sharma, P.; Kollmannsberger, C.K. Nivolumab (anti-PD-1; BMS-936558,
ONO-4538) in combination with sunitinib or pazopanib in patients
(pts) with metastatic renal cell carcinoma (mRCC). Ann. Meet.
Proc., 2014, 2032, p. 5010..
[87]
Ohri, N.; Kaubisch, A.; Garg, M.; Guha, C. Targeted therapy for hepatocellular carcinoma. Semin. Radiat. Oncol., 2016, 26(4), 338-343.
[88]
Bhayani, N.H.; Jiang, Y.; Hamed, O.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Gusani, N.J. Advances in the pharmacologic treatment of hepatocellular carcinoma. Curr. Clin. Pharmacol., 2015, 10(4), 299-304.
[89]
Weiss, A.; van Beijnum, J.R.; Bonvin, D.; Jichlinski, P.; Dyson, P.J.; Griffioen, A.W.; Nowak-Sliwinska, P. Low-dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization. J. Cell. Mol. Med., 2014, 18(3), 480-491.
[90]
Hato, T.; Zhu, A.X.; Duda, D.G. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy, 2016, 8(3), 299-313.
[91]
Yaguchi, T.; Goto, Y.; Kido, K.; Mochimaru, H.; Sakurai, T.; Tsukamoto, N.; Kudo-Saito, C.; Fujita, T.; Sumimoto, H.; Kawakami, Y. Immune suppression and resistance mediated by constitutive activation of Wnt/beta-catenin signaling in human melanoma cells. J. Immunol., 2012, 189(5), 2110-2117.
[92]
Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature, 2015, 523(7559), 231-235.
[93]
Zhong, Z.; Sanchez-Lopez, E.; Karin, M. Autophagy, Inflammation, and immunity: A troika governing cancer and its treatment. Cell, 2016, 166(2), 288-298.
[94]
Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Immunology, 2013, 31(31), 224-233.
[95]
Martins, I.; Michaud, M.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Shen, S.; Kepp, O.; Menger, L.; Vacchelli, E.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy, 2012, 8(3), 413-415.
[96]
Martinez-Lopez, N.; Athonvarangkul, D.; Singh, R. Autophagy and Aging; Springer: New York, 2015.
[97]
Malhi, H.; Kaufman, R.J. Endoplasmic Reticulum Stress in Liver Disease. J. Hepatol., 2011, 54(4), 795-809.
[98]
Pol, J.; Vacchelli, E.; Aranda, F.; Castoldi, F.; Eggermont, A.; Cremer, I.; Sautes-Fridman, C.; Fucikova, J.; Galon, J.; Spisek, R.; Tartour, E.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. OncoImmunology, 2015, 4(4), e1008866.