[1]
Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int., 1994, 4, 368-381.
[2]
Kanis, JA on behalf of the World Health Organization Scientific
Group. Assessment of osteoporosis at the primary health care level.
WHO scientific group Technical Report. 2007, 66.
[3]
Chlebowski, R.T.; Manson, J.E.; Anderson, G.L.; Cauley, J.A.; Aragaki, A.K.; Stefanick, M.L.; Lane, D.S.; Johnson, K.C.; Wactawski-Wende, J.; Chen, C.; Qi, L.; Yasmeen, S.; Newcomb, P.A.; Prentice, R.L. Estrogen plus Progestin and breast cancer incidence and mortality in women’s health initiative observational study. J. Natl. Cancer Inst., 2013, 105(8), 526-535.
[4]
Scalley, E.K.; Henrich, J.B. An overview of estrogen replacement therapy in postmenopausal women. J. Womens Health, 1993, 2, 289.
[5]
Witt, D.M.; Lousberg, T.R. Controversies surrounding estrogen use in postmenopausal women. Ann. Pharmacother., 1997, 31, 745.
[6]
Josse, R.G. clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. Can. Med. Assoc., 1996, 155, 929.
[7]
Bikiaris, D.; Karavelidis, V.; Karavas, E. Synthesis and application as drug carriers for the preparation of raloxifene HCL loaded nanoparticles. Molecules (Basel, Switzerland), 2009, 14(7), 2410-2430.
[8]
Sato, M.; Glasebrook, A.L.; Bryant, H.U. Raloxifene: A selective estrogen receptor modulator. J. Bone Miner. Metab., 1994, 12, S9-S20.
[9]
Paech, K.; Webb, D.; Kuiper, G.G. Differential ligand activation of strogen receptors E and ER at API sites. Science, 1997, 277, 1508-1510.
[10]
Buzdar, A.U.; Marcus, C.; Holmes, F.; Hug, V.; Hortobagyi, G. Phase II evaluation of Ly156758 in metastatic breast cancer. Oncology, 1988, 45(5), 344-345.
[11]
Jordan, V.C.; Phelps, E.; Lindgren, J.U. Effects of anti-estrogens on bone in castrated and intact female rats. Breast Cancer Res. Treat., 1987, 10(1), 31-35.
[12]
Black, L.J.; Sato, M.; Rowley, E.R. Raloxifene (LY139481 HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J. Clin. Invest., 1994, 93(1), 63-69.
[13]
Sato, M.; Kim, J.; Short, L.L.; Slemenda, C.W.; Bryant, H.U. Longitudinal and cross-sectional analysis of raloxifene effects on tibiae from ovariectomized aged rats. J. Pharmacol. Exp. Ther., 1995, 72(3), 1252-1259.
[14]
Wempe, M.F.; Wacher, V.J.; Ruble, K.M. Pharmacokinetics of raloxifene in male Wistar–Hannover rats: Influence of complexation with hydroxybutenyl-beta-cyclodextrin. Int. J. Pharm., 2008, 346, 25-37.
[15]
Heringa, M. Review on raloxifene: Profile of a selective estrogen receptor modulator. Int. J. Clin. Pharmacol. Ther., 2003, 41(8), 331-345.
[16]
Escobar-Chávez, J.J.; Rodríguez-Cruz, I.M.; Domínguez-Delgado, C.L.; Díaz-Torres, R.; Revilla-Vázquez, A.L.; Aléncaster, N.C. Nanocarrier systems for transdermal drug delivery.In: Recent advances in novel drug carrier systems; InTech: Rijeka, Croatia, 2012.
[17]
Bahiraei, M.; Hangi, M.; Saeedan, M. A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy, 2015, 93(2), 2229-2240.
[18]
Bahiraei, M.; Khosravi, R.; Heshmatian, S. Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer’s viewpoint. Appl. Therm. Eng., 2017, 123, 266-276.
[19]
Jo, S-H.; Kim, K-H.; Kim, Y-H.; Lee, M-H.; Kim, B-W.; Ahn, J-H. Deodorization of food-related nuisances from a refrigerator: The feasibility test of photocatalytic system. Chem. Eng. J., 2015, 277, 260-268.
[20]
Bahiraei, M.; Hangi, M.; Hosseinalipour, S. Numerical study and optimization of hydrothermal characteristics of Mn–Zn ferrite nanofluid within annulus in the presence of magnetic field. J. Supercond. Nov. Magn., 2014, 27(2), 527-534.
[21]
Robert, W.L.; Dinesh, B.S. Rajiv, Sheel. Micellar nanoparticles: Applications for topical and passive transdermal drug delivery.In: Handbook Non Invasive Drug Delivery Systems; Science Direct, 2010, pp. 37-58.
[22]
Mahmood, S.; Taher, M. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int. J. Nanomed, 2014, 9, 4331-4346.
[23]
Barry, B. Breaching the skin’s barrier to drugs. Nat. Biotechnol., 2004, 22(2), 165-167.
[24]
Mishra, S.; Kesharwani, R. Improvement of drug penetration through the skin by using nanostructured lipid carriers (NLC). Int. J. Pharm. Pharm. Res., 2016, 6(3), 481-496.
[25]
López-García, R.; Ganem-Rondero, A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability. J. Cosmetics Dermatol. Sci. Appl., 2015, 5, 62-72.
[26]
Prabhu, P.; Dubey, A.; Kamath, J.V. Nano Structured lipid carriers: A novel topical drug delivery system. Int. J. Pharm. Tech. Res., 2012, 4(2), 705-714.
[27]
Svilenov, H. solid lipid nanoparticles – a promising drug delivery system. Nanomedicine, 2011, 3(4), 187-237.
[28]
Shekhawat, P. Preparation and evaluation of clotrimazole Nanostructured lipid carrier for topical delivery. Int. J. Pharma Bio Sci., 2013, 4(1), 407-416.
[29]
Dandagi, P. Formulation and evaluation of nanostructured lipid carrier (nlc) of lornoxicam. Int. J. Pharm. Pharm. Sci., 2014, 6(2), 73-77.
[30]
Kushwaha, A.K. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed Res. Int., 2013, 2013584549
[31]
Klang, V.; Schwarz, J.C.; Lenobel, B.; Nadj, M.; Auböck, J.; Wolzt, M.; Valenta, C. In vitro vs. in vivo tape stripping: Validation of the porcine ear model and penetration assessment of novel sucrose stearate emulsions. Eur. J. Pharm. Biopharm., 2012, 80, 604-614.
[32]
Vaddi, H.K.; Ho, P.C.; Chan, S. Terpenes in propylene glycol as skin penetration enhancers: Permeation and partition of haloperidol, fourier transform infrared spectroscopy, and differential scanning calorimetry. J. Pharm. Sci., 2002, 91(7), 1639-1651.