[1]
Villar CC, Cochran DL. Regeneration of periodontal tissues: Guided tissue regeneration. Dent Clin North Am 2010; 54(1): 73-92.
[2]
Sakallioglu U, Acikgoz G, Ayas B, et al. Healing of periodontal defects treated with enamel matrix proteins and root surface conditioning--an experimental study in dogs. Biomaterials 2004; 25(10): 1831-40.
[3]
Lossdorfer S, Kraus D, Jager A. Aging affects the phenotypic characteristics of human periodontal ligament cells and the cellular response to hormonal stimulation in vitro. J Periodontal Res 2010; 45(6): 764-71.
[4]
Zhang J, An Y, Gao LN, et al. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells. Biomaterials 2012; 33(29): 6974-86.
[5]
Joseph J, Kapila YL, Hayami T, et al. Disease-associated extracellular matrix suppresses osteoblastic differentiation of human periodontal ligament cells via MMP-1. Calcif Tissue Int 2010; 86(2): 154-62.
[6]
Chen FM, Jin Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng Part B Rev 2010; 16(2): 219-55.
[7]
King GN, Hughes FJ. Bone morphogenetic protein-2 stimulates cell recruitment and cementogenesis during early wound healing. J Clin Periodontol 2001; 28(5): 465-75.
[8]
Rimondini L, Mele S. Stem cell technologies for tissue regeneration in dentistry. Minerva Stomatol 2009; 58(10): 483-500.
[9]
Akizuki T, Oda S, Komaki M, et al. Application of periodontal ligament cell sheet for periodontal regeneration: A pilot study in beagle dogs. J Periodontal Res 2005; 40(3): 245-51.
[10]
Larsson L, Decker AM, Nibali L, et al. Regenerative medicine for periodontal and peri-implant diseases. J Dent Res 2016; 95(3): 255-66.
[11]
Astolphi RD, Curbete MM, Colombo NH, et al. Periapical lesions decrease insulin signal and cause insulin resistance. J Endod 2013; 39(5): 648-52.
[12]
Colombo NH, Shirakashi DJ, Chiba FY, et al. Periodontal disease decreases insulin sensitivity and insulin signaling. J Periodontol 2012; 83(7): 864-70.
[13]
Deschner J, Eick S, Damanaki A, et al. The role of adipokines in periodontal infection and healing. Mol Oral Microbiol 2014; 29(6): 258-69.
[14]
Nokhbehsaim M, Keser S, Nogueira AV, et al. Leptin effects on the regenerative capacity of human periodontal cells. Int J Endocrinol 2014; 2014: 180304.
[15]
King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol 2008; 79(8)(Suppl.): 1527-34.
[16]
Nishimura F, Iwamoto Y, Mineshiba J, et al. Periodontal disease and diabetes mellitus: the role of tumor necrosis factor-alpha in a 2-way relationship. J Periodontol 2003; 74(1): 97-102.
[17]
Huang X, Yu T, Ma C, et al. Macrophages play a key role in the obesity-induced periodontal innate immune dysfunction via nucleotide-binding oligomerization Domain-Like Receptor Protein 3 Pathway. J Periodontol 2016; 87(10): 1195-205.
[18]
Ebersole JL, Kryscio RJ, Campbell C, et al. Salivary and serum adiponectin and C-reactive protein levels in acute myocardial infarction related to body mass index and oral health. J Periodontal Res 2017; 52(3): 419-27.
[19]
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9(5): 641-50.
[20]
Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987; 20(3): 263-72.
[21]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[22]
Szepesi A, Matula Z, Szigeti A, et al. In vitro characterization of human mesenchymal stem cells isolated from different tissues with a potential to promote complex bone regeneration. Stem Cells Int 2016; 2016: 3595941.
[23]
De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174(3): 101-9.
[24]
Dragoo JL, Choi JY, Lieberman JR, et al. Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 2003; 21(4): 622-9.
[25]
Hattori H, Sato M, Masuoka K, et al. Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 2004; 178(1): 2-12.
[26]
Knippenberg M, Helder MN, Doulabi BZ, et al. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 2005; 11(11-12): 1780-8.
[27]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[28]
Trivanovic D, Jaukovic A, Popovic B, et al. Mesenchymal stem cells of different origin: Comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sci 2015; 141: 61-73.
[29]
Hernandez-Monjaraz B, Santiago-Osorio E, Monroy-Garcia A, et al. Mesenchymal Stem Cells of dental origin for inducing tissue regeneration in periodontitis: A mini-review. Int J Mol Sci 2018; 19(4)
[30]
Sedgley CM, Botero TM. Dental stem cells and their sources. Dent Clin North Am 2012; 56(3): 549-61.
[31]
Takedachi M, Sawada K, Yamamoto S, et al. Periodontal tissue regeneration by transplantation of adipose tissue-derived stem cells. J Oral Biosci 2013; 55(3): 137-42.
[32]
Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration. Oral Dis 2018; 24(5): 696-705.
[33]
Cochran DL, Cobb CM, Bashutski JD, et al. Emerging regenerative approaches for periodontal reconstruction: A consensus report from the AAP Regeneration Workshop. J Periodontol 2015; 86(2)(Suppl.): S153-6.
[34]
Tassi SA, Sergio NZ, Misawa MYO, et al. Efficacy of stem cells on periodontal regeneration: Systematic review of pre-clinical studies. J Periodontal Res 2017; 52(5): 793-812.
[35]
Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 2007; 10(3): 149-60.
[36]
Iwata T, Yamato M, Zhang Z, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol 2010; 37(12): 1088-99.
[37]
Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 2014; 6(2): 144-52.
[38]
Halvorsen YC, Wilkison WO, Gimble JM. Adipose-derived stromal cells--their utility and potential in bone formation. Int J Obes Relat Metab Disord 2000; 24(Suppl. 4): S41-4.
[39]
Halvorsen YD, Franklin D, Bond AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 2001; 7(6): 729-41.
[40]
Kolaparthy LK, Sanivarapu S, Moogla S, et al. Adipose Tissue - adequate, accessible regenerative material. Int J Stem Cells 2015; 8(2): 121-7.
[41]
Hung CN, Mar K, Chang HC, et al. A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials 2011; 32(29): 6995-7005.
[42]
Heo JS, Choi Y, Kim HS, et al. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25.
[43]
Fraser JK, Wulur I, Alfonso Z, et al. Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24(4): 150-4.
[44]
Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct 2008; 26(6): 664-75.
[45]
Rodbell M. The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem 1966; 241(17): 3909-17.
[46]
Rodbell M. Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem 1966; 241(1): 130-9.
[47]
Rodbell M, Jones AB. Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem 1966; 241(1): 140-2.
[48]
Gagliardi C, Bunnell BA. Isolation and culture of rhesus adipose-derived stem cells. Methods Mol Biol 2011; 702: 3-16.
[49]
Locke M, Feisst V, Dunbar PR. Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem Cells 2011; 29(3): 404-11.
[50]
Bunnell BA, Flaat M, Gagliardi C, et al. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 2008; 45(2): 115-20.
[51]
Tholpady SS, Llull R, Ogle RC, et al. Adipose tissue: Stem cells and beyond. Clin Plast Surg 2006; 33(1): 55-62. [vi.].
[52]
Zuk P. Adipose-Derived Stem Cells in Tissue Regeneration: A Review. ISRN Stem Cells 2013; 2013: 35.
[53]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[54]
Kishimoto N, Honda Y, Momota Y, et al. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 1-7.
[55]
Matsumoto T, Kano K, Kondo D, et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 2008; 215(1): 210-22.
[56]
Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
[57]
Monaco E, Bionaz M, Hollister SJ, et al. Strategies for regeneration of the bone using porcine adult adipose-derived mesenchymal stem cells. Theriogenology 2011; 75(8): 1381-99.
[58]
Monaco E, Lima AS, Bionaz M, et al. Morphological and transcriptomic comparison of adipose and bone marrow derived porcine stem cells. J Tissue Eng Regen Med 2009; 2: 20-33.
[59]
Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004; 6(1): 7-14.
[60]
Yu G, Wu X, Dietrich MA, et al. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 2010; 12(4): 538-46.
[61]
Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol 2011; 702: 87-105.
[62]
Guneta V, Tan NS, Chan SK, et al. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions. Exp Cell Res 2016; 348(2): 155-64.
[63]
Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: Implications for cell-based therapies. Cell Tissue Res 2008; 332(3): 415-26.
[64]
Guneta V, Tan NS, Sugii S, et al. Comparative study of adipose-derived stem cells from abdomen and breast. Ann Plast Surg 2016; 76(5): 569-75.
[65]
Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189(1): 54-63.
[66]
Niada S, Ferreira LM, Arrigoni E, et al. Porcine adipose-derived stem cells from buccal fat pad and subcutaneous adipose tissue for future preclinical studies in oral surgery. Stem Cell Res Ther 2013; 4(6): 148.
[67]
Broccaioli E, Niada S, Rasperini G, et al. Mesenchymal Stem Cells from bichat's fat pad: In vitro comparison with adipose-derived stem cells from subcutaneous tissue. Biores Open Access 2013; 2(2): 107-7.
[68]
Bravo Cordero G, Minzer Ferrer S, Fernandez L. Odontogenic sinusitis, oro-antral fistula and surgical repair by Bichat’s fat pad: Literature review. Acta Otorrinolaringol Esp 2016; 67(2): 107-13.
[69]
Grayson WL, Bunnell BA, Martin E, et al. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015; 11(3): 140-50.
[70]
Shi YY, Nacamuli RP, Salim A, et al. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 2005; 116(6): 1686-96.
[71]
Nordberg RC, Zhang J, Griffith EH, et al. Electrical cell-substrate impedance spectroscopy can monitor age-grouped human adipose stem cell variability during osteogenic differentiation. Stem Cells Transl Med 2017; 6(2): 502-11.
[72]
Shimizu Y, Sato S. In vitro study on regeneration of periodontal tissue microvasculature using human dedifferentiated fat cells. J Periodontol 2015; 86(1): 129-36.
[73]
Akita D, Kano K, Saito-Tamura Y, et al. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration. Front Physiol 2016; 7: 50.
[74]
Sugawara A, Sato S. Application of dedifferentiated fat cells for periodontal tissue regeneration. Hum Cell 2014; 27(1): 12-21.
[75]
Hakki SS, Turac G, Bozkurt SB, et al. Comparison of different sources of mesenchymal stem cells: Palatal versus lipoaspirated adipose tissue. Cells Tissues Organs 2017; 204(5-6): 228-40.
[76]
Kim JH, Jo CH, Kim HR, et al. Comparison of immunological characteristics of mesenchymal stem cells from the periodontal ligament, umbilical cord, and adipose tissue. Stem Cells Int 2018; 2018: 8429042.
[77]
Lee SJ, Yi T, Ahn SH, et al. Comparative study on metabolite level in tissue-specific human mesenchymal stem cells by an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry. Anal Chim Acta 2018; 1024: 112-22.
[78]
Liu N, Gu B, Liu N, et al. Wnt/beta-catenin pathway regulates cementogenic differentiation of adipose tissue-deprived stem cells in dental follicle cell-conditioned medium. PLoS One 2014; 9(5): e93364.
[79]
Mattioli-Belmonte M, Teti G, Salvatore V, et al. Stem cell origin differently affects bone tissue engineering strategies. Front Physiol 2015; 6: 266.
[80]
Requicha JF, Viegas CA, Hede S, et al. Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications. J Tissue Eng Regen Med 2016; 10(5): 392-403.
[81]
Requicha JF, Viegas CA, Munoz F, et al. A tissue engineering approach for periodontal regeneration based on a biodegradable double-layer scaffold and adipose-derived stem cells. Tissue Eng Part A 2014; 20(17-18): 2483-92.
[82]
Sawada K, Takedachi M, Yamamoto S, et al. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells. Biochem Biophys Res Commun 2015; 464(1): 299-305.
[83]
Soltani Dehnavi S, Mehdikhani M, Rafienia M, et al. Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Mater Sci Eng C Mater Biol Appl 2018; 90: 236-47.
[84]
Wen X, Nie X, Zhang L, et al. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro. Biochem Biophys Res Commun 2011; 409(3): 583-9.
[85]
Xin Y, Chai G, Zhang T, et al. Analysis of multiple types of human cells subsequent to bioprinting with electrospraying technology. Biomed Rep 2016; 5(6): 723-30.
[86]
Alvira-Gonzalez J, Sanchez-Garces MA, Cairo JR, et al. Assessment of bone regeneration using adipose-derived stem cells in critical-size alveolar ridge defects: An experimental study in a dog model. Int J Oral Maxillofac Implants 2016; 31(1): 196-203.
[87]
Akita D, Morokuma M, Saito Y, et al. Periodontal tissue regeneration by transplantation of rat adipose-derived stromal cells in combination with PLGA-based solid scaffolds. Biomed Res 2014; 35(2): 91-103.
[88]
Aziz Aly LA, El-Menoufy H, Hassan A, et al. Influence of autologus adipose derived stem cells and prp on regeneration of dehiscence-type defects in alveolar bone: a comparative histochemical and histomorphometric study in dogs. Int J Stem Cells 2011; 4(1): 61-9.
[89]
Demirel S, Yalvac ME, Tapsin S, et al. Tooth replantation with adipose tissue stem cells and fibrin sealant: Microscopic analysis of rat’s teeth. Springerplus 2016; 5(1): 656.
[90]
Lemaitre M, Monsarrat P, Blasco-Baque V, et al. Periodontal tissue regeneration using syngeneic adipose-derived stromal cells in a mouse model. Stem Cells Transl Med 2017; 6(2): 656-65.
[91]
Matsubara FB, Zanicotti DG, Zielak JC, et al. Nonprocessed adipose tissue graft in the treatment of dehiscence bone defects in rabbit tibiae: a pilot study. Implant Dent 2012; 21(3): 236-41.
[92]
Sanchez-Garces MA, Alvira-Gonzalez J, Sanchez CM, et al. Bone regeneration using adipose-derived stem cells with fibronectin in dehiscence-type defects associated with dental implants: An experimental study in a dog model. Int J Oral Maxillofac Implants 2017; 32(2): e97-e106.
[93]
Shafieian R, Matin MM, Rahpeyma A, et al. The effect of platelet-rich plasma on human mesenchymal stem cell-induced bone regeneration of canine alveolar defects with calcium phosphate-based scaffolds. Iran J Basic Med Sci 2017; 20(10): 1131-40.
[94]
Tobita M, Uysal AC, Ogawa R, et al. Periodontal tissue regeneration with adipose-derived stem cells. Tissue Eng Part A 2008; 14(6): 945-53.
[95]
Tobita M, Mizuno H. Adipose-derived stem cells for periodontal tissue regeneration. Methods Mol Biol 2011; 702: 461-70.
[96]
Wu PH, Chung HY, Wang JH, et al. Amniotic membrane and adipose-derived stem cell co-culture system enhances bone regeneration in a rat periodontal defect model. J Formos Med Assoc 2016; 115(3): 186-94.
[97]
Ye L, Chen L, Feng F, et al. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells. Cell Biol Int 2015; 39(10): 1151-61.
[98]
Tobita M, Uysal CA, Guo X, et al. Periodontal tissue regeneration by combined implantation of adipose tissue-derived stem cells and platelet-rich plasma in a canine model. Cytotherapy 2013; 15(12): 1517-26.
[99]
Weinreb M, Nemcovsky CE. In vitro models for evaluation of periodontal wound healing/regeneration. Periodontol 2000 2015; 68(1): 41-54.
[100]
Lee JS, Kim TW, Park S, et al. Reduction of adipose tissue formation by the controlled release of BMP-2 using a hydroxyapatite-coated collagen carrier system for sinus-augmentation/extraction-socket grafting. Materials (Basel) 2015; 8(11): 7634-49.
[101]
Ivanovski S, Vaquette C, Gronthos S, et al. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 2014; 93(12): 1212-21.
[102]
Bartold PM, Gronthos S, Ivanovski S, et al. Tissue engineered periodontal products. J Periodontal Res 2016; 51(1): 1-15.
[103]
Donzelli E, Salvade A, Mimo P, et al. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Arch Oral Biol 2007; 52(1): 64-73.
[104]
de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration. J Periodontal Res 2017; 52(6): 965-74.
[105]
Neo PY, Teh TK, Tay AS, et al. Stem cell-derived cell-sheets for connective tissue engineering. Connect Tissue Res 2016; 57(6): 428-42.
[106]
Hasegawa M, Yamato M, Kikuchi A, et al. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 2005; 11(3-4): 469-78.
[107]
Iwata T, Washio K, Yoshida T, et al. Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med 2015; 9(4): 343-56.
[108]
Kuk M, Kim Y, Lee SH, et al. Osteogenic ability of canine adipose-derived mesenchymal stromal cell sheets in relation to culture time. Cell Transplant 2016; 25(7): 1415-22.
[109]
Qian Y, Han Q, Chen W, et al. Platelet-Rich Plasma Derived Growth Factors contribute to stem cell differentiation in musculoskeletal regeneration. Front Chem 2017; 5: 89.
[110]
Pellegrini G, Seol YJ, Gruber R, et al. Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res 2009; 88(12): 1065-76.
[111]
Fawzy El-Sayed KM, Doerfer C. Animal models for periodontal tissue engineering: A knowledge generating process. Tissue Eng Part C Methods 2017; 23(12): 900-25.
[112]
Struillou X, Boutigny H, Soueidan A, et al. Experimental animal models in periodontology: a review. Open Dent J 2010; 4: 37-47.
[113]
Li H, Yan F, Lei L, et al. Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs. Cells Tissues Organs 2009; 190(2): 94-101.
[114]
Ebina H, Hatakeyama J, Onodera M, et al. Micro-CT analysis of alveolar bone healing using a rat experimental model of critical-size defects. Oral Dis 2009; 15(4): 273-80.
[115]
Oortgiesen DA, Meijer GJ, Bronckers AL, et al. Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement. Clin Oral Investig 2013; 17(2): 411-21.
[116]
Oortgiesen DA, Plachokova AS, Geenen C, et al. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration. J Clin Periodontol 2012; 39(6): 546-55.
[117]
Oortgiesen DA, Walboomers XF, Bronckers AL, et al. Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J Tissue Eng Regen Med 2014; 8(3): 202-9.
[118]
Levi B, James AW, Nelson ER, et al. Acute skeletal injury is necessary for human adipose-derived stromal cell-mediated calvarial regeneration. Plast Reconstr Surg 2011; 127(3): 1118-29.
[119]
Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol 2011; 2011: 754857.
[120]
Lee JH, Lin JD, Fong JI, et al. The adaptive nature of the bone-periodontal ligament-cementum complex in a ligature-induced periodontitis rat model. Biomed Res Int 2013; 2013: 876316.
[121]
Melcher AH. Repair of wounds in the periodontium of the rat. Influence of periodontal ligament on osteogenesis. Arch Oral Biol 1970; 15(12): 1183-204.
[122]
Lekic PC, Rajshankar D, Chen H, et al. Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 2001; 262(2): 193-202.
[123]
Talwar R, Di Silvio L, Hughes FJ, et al. Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. J Clin Periodontol 2001; 28(4): 340-7.
[124]
Padial-Molina M, Marchesan JT, Taut AD, et al. Methods to validate tooth-supporting regenerative therapies. Methods Mol Biol 2012; 887: 135-48.
[125]
Huang KK, Shen C, Chiang CY, et al. Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. J Periodontal Res 2005; 40(1): 1-10.
[126]
Zhao M, Jin Q, Berry JE, et al. Cementoblast delivery for periodontal tissue engineering. J Periodontol 2004; 75(1): 154-61.
[127]
Iwasaki K, Komaki M, Yokoyama N, et al. Periodontal regeneration using periodontal ligament stem cell-transferred amnion. Tissue Eng Part A 2014; 20(3-4): 693-704.
[128]
Nemcovsky CE, Zahavi S, Moses O, et al. Effect of enamel matrix protein derivative on healing of surgical supra-infrabony periodontal defects in the rat molar: a histomorphometric study. J Periodontol 2006; 77(6): 996-1002.
[129]
Cai X, Yang F, Yan X, et al. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo. J Clin Periodontol 2015; 42(4): 380-9.
[130]
Fawzy El-Sayed KM, Paris S, Becker ST, et al. Periodontal regeneration employing gingival margin-derived stem/progenitor cells: an animal study. J Clin Periodontol 2012; 39(9): 861-70.
[131]
Kim YT, Park JC, Choi SH, et al. The dynamic healing profile of human periodontal ligament stem cells: histological and immunohistochemical analysis using an ectopic transplantation model. J Periodontal Res 2012; 47(4): 514-24.
[132]
Kim K, Lee CH, Kim BK, et al. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010; 89(8): 842-7.
[133]
d’Aquino R, De Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009; 18: 75-83.
[134]
Baba S, Yamada Y, Komuro A, et al. Phase I/II Trial of Autologous Bone Marrow Stem Cell Transplantation with a Three-Dimensional Woven-Fabric Scaffold for Periodontitis. Stem Cells Int 2016; 2016: 6205910.
[135]
Dufrane D, Docquier PL, Delloye C, et al. Scaffold-free three-dimensional graft from autologous adipose-derived stem cells for large bone defect reconstruction: Clinical proof of concept. Medicine (Baltimore) 2015; 94(50): e2220.
[136]
Fomekong E, Dufrane D, Berg BV, et al. Application of a three-dimensional graft of autologous osteodifferentiated adipose stem cells in patients undergoing minimally invasive transforaminal lumbar interbody fusion: clinical proof of concept. Acta Neurochir (Wien) 2017; 159(3): 527-36.
[137]
Kaku M, Akiba Y, Akiyama K, et al. Cell-based bone regeneration for alveolar ridge augmentation--cell source, endogenous cell recruitment and immunomodulatory function. J Prosthodont Res 2015; 59(2): 96-112.
[138]
Romanos GE, Asnani KP, Hingorani D, et al. PERIOSTIN: role in formation and maintenance of dental tissues. J Cell Physiol 2014; 229(1): 1-5.
[139]
Heo SC, Shin WC, Lee MJ, et al. Periostin accelerates bone healing mediated by human mesenchymal stem cell-embedded hydroxyapatite/tricalcium phosphate scaffold. PLoS One 2015; 10(3): e0116698.
[140]
Salgado AJ, Reis RL, Sousa NJ, et al. Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther 2010; 5: 103-10.
[141]
Shapiro IM, Landis WJ, Risbud MV. Matrix vesicles: Are they anchored exosomes? Bone 2015; 79: 29-36.
[142]
Qin Y, Sun R, Wu C, et al. Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int J Mol Sci 2016; 17(5): E712.
[143]
Lu Z, Chen Y, Dunstan C, et al. Priming adipose stem cells with tumor necrosis factor-alpha preconditioning potentiates their exosome efficacy for bone regeneration. Tissue Eng Part A 2017; 23(21-22): 1212-20.
[144]
Zhang J, Liu X, Li H, et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 2016; 7(1): 136.
[145]
Wu L, Zhu F, Wu Y, et al. Dentin sialophosphoprotein-promoted mineralization and expression of odontogenic genes in adipose-derived stromal cells. Cells Tissues Organs 2008; 187(2): 103-12.
[146]
Froelich K, Steussloff G, Schmidt K, et al. DiI labeling of human adipose-derived stem cells: evaluation of DNA damage, toxicity and functional impairment. Cells Tissues Organs 2013; 197(5): 384-98.