[1]
Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet, 2011, 377(9773), 1276-1287.
[2]
Riggs, B.L.; Melton, L.J. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 1995, 17(5), S505-S511.
[3]
Kanis, J.A.; Borgström, F.; Compston, J.; Dreinhöfer, K.; Nolte, E.; Jonsson, L.; Lems, W.F.; McCloskey, E.V.; Rizzoli, R.; Stenmark, J. SCOPE: A scorecard for osteoporosis in Europe. Arch. Osteoporos., 2013, 8(1-2), 144.
[4]
Kanis, J.A.; Adachi, J.D.; Cooper, C.; Clark, P.; Cummings, S.R.; Diaz-Curiel, M.; Harvey, N.; Hiligsmann, M.; Papaioannou, A.; Pierroz, D.D.; Silverman, S.L.; Szulc, P. Epidemiology and Quality of Life Working Group of IOF. Standardising the descriptive epidemiology of osteoporosis: recommendations from the epidemiology and quality of life working group of iof. Osteoporos. Int., 2013, 24(11), 2763-2764.
[5]
Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Oden, A.; Melton, L.J.; Khaltaev, N. A reference standard for the description of osteoporosis. Bone, 2008, 42(3), 467-475.
[6]
Lane, N.E. Epidemiology, etiology, and diagnosis of osteoporosis. Am. J. Obstet. Gynecol., 2006, 194(2)(Suppl.), S3-S11.
[7]
Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAXTM and the assessment of fracture probability in men and women from the UK. Osteoporos. Int., 2008, 19(4), 385-397.
[8]
Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European union: Medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos., 2013, 8(1-2), 136.
[9]
Ensrud, K.E.; Crandall, C. J. Osteoporosis. Ann. Intern. Med., 2017, 167(3), ITC17-ITC31.
[10]
Diem, S.J.; Peters, K.W.; Gourlay, M.L.; Schousboe, J.T.; Taylor, B.C.; Orwoll, E.S.; Cauley, J.A.; Langsetmo, L.; Crandall, C.J.; Ensrud, K.E. Osteoporotic Fractures in Men Research Group. Screening for osteoporosis in older men: Operating characteristics of proposed strategies for selecting men for BMD testing. J. Gen. Intern. Med., 2017, 32(11), 1235-1241.
[11]
Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone, 2006, 38(2)(Suppl. 1), S4-S9.
[13]
Ström, O.; Borgström, F.; Kanis, J.A.; Compston, J.; Cooper, C.; McCloskey, E.V.; Jönsson, B. Osteoporosis: Burden, health care provision and opportunities in the EU. Arch. Osteoporos., 2011, 6(1-2), 59-155.
[14]
Mauck, K.F.; Clarke, B.L. Diagnosis, Screening, Prevention, and Treatment of Osteoporosis. Mayo Clin. Proc., 2006, 81(5), 662-672.
[15]
Nabipour, I.; Sambrook, P.N.; Blyth, F.M.; Janu, M.R.; Waite, L.M.; Naganathan, V.; Handelsman, D.J.; Le Couteur, D.G.; Cumming, R.G.; Seibel, M.J. Serum uric acid is associated with bone health in older men: A cross-sectional population-based study. J. Bone Miner. Res., 2011, 26(5), 955-964.
[16]
Kaushal, N.; Vohora, D.; Jalali, R.; Jha, S. Raised serum uric acid is associated with higher bone mineral density in a cross-sectional study of a healthy Indian population. Ther. Clin. Risk Manag., 2018, 14, 75-82.
[17]
Veronese, N.; Carraro, S.; Bano, G.; Trevisan, C.; Solmi, M.; Luchini, C.; Manzato, E.; Caccialanza, R.; Sergi, G.; Nicetto, D.; Cereda, E. Hyperuricemia protects against low bone mineral density, osteoporosis and fractures: A systematic review and meta-analysis. Eur. J. Clin. Invest., 2016, 46(11), 920-930.
[18]
Roch-Ramel, F.; Guisan, B. Renal transport of urate in humans. News Physiol. Sci., 1999, 14, 80-84.
[19]
Álvarez-Lario, B.; Macarrón-Vicente, J. Uric acid and evolution. Rheumatology, 2010, 49(11), 2010-2015.
[20]
El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res., 2017, 8(5), 487-493.
[21]
de Oliveira, E.P.; Burini, R.C. High plasma uric acid concentration: Causes and consequences. Diabetol. Metab. Syndr., 2012, 4(1), 12.
[22]
Watts, R.W. Uric acid production with particular reference to the role of xanthine oxidase and its inhibition. Proc. R. Soc. Med., 1966, 59(4), 287-292.
[23]
Hediger, M.A. Molecular physiology of urate transport. Physiology, 2005, 20(2), 125-133.
[24]
Wu, X.; Muzny, D.M.; Lee, C.C.; Caskey, C.T. two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol., 1992, 34(1), 78-84.
[25]
Oda, M.; Satta, Y.; Takenaka, O.; Takahata, N. loss of urate oxidase activity in hominoids and its evolutionary implications. Mol. Biol. Evol., 2002, 19(5), 640-653.
[26]
Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; Matsuo, H.; Kikuchi, Y.; Oda, T.; Ichida, K.; Hosoya, T.; Shimokata, K.; Niwa, T.; Kanai, Y.; Endou, H. Molecular identification of a renal urate-anion exchanger that regulates blood urate levels. Nature, 2002, 417(6887), 447-452.
[27]
Yang, Y.; Ishii, S. Serum uric acid and biomarkers of lumbar spine bone mineral density. In:Biomarkers in Bone Disease; Patel, V.; Preedy, V., Eds.; Springer: Dordrecht, 2017, pp. 201-220.
[28]
Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA, 1981, 78(11), 6858-6862.
[29]
Lai, J.H.; Luo, S.F.; Hung, L.F.; Huang, C.Y.; Lien, S.B.; Lin, L.C.; Liu, F.C.; Yen, B.L.; Ho, L.J. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory. Sci. Rep., 2017, 7(1), 2359.
[30]
Chen, L.; Zhu, W.; Chen, Z.; Dai, H.; Ren, J.; Chen, J.; Chen, L.; Fang, L. Relationship between hyperuricemia and metabolic syndrome. J. Zhejiang Univ. Sci. B, 2007, 8(8), 593-598.
[31]
Cameron, M.A.; Sakhaee, K. Uric acid nephrolithiasis. Urol. Clin. North Am., 2007, 34(3), 335-346.
[32]
Terkeltaub, R.; Bushinsky, D.A.; Becker, M.A. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res. Ther., 2006(Suppl. 1), S4.
[33]
Verdecchia, P.; Schillaci, G.; Reboldi, G.; Santeusanio, F.; Porcellati, C.; Brunetti, P. relation between serum uric acid and risk of cardiovascular disease in essential hypertension: The PIUMA study. Hypertension, 2000, 36(6), 1072-1078.
[34]
Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; Herrera-Acosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003, 41, 1183-1190.
[35]
Dehghan, A.; van Hoek, M.; Sijbrands, E.J.G.; Hofman, A.; Witteman, J.C.M. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care, 2008, 31(2), 361-362.
[36]
Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol., 2016, 213, 8-14.
[37]
Feig, D.I. Hyperuricemia and hypertension. Adv. Chronic Kidney Dis., 2012, 19(6), 377-385.
[38]
Greig, D.; Alcaino, H.; Castro, P.F.; Garcia, L.; Verdejo, H.E.; Navarro, M.; López, R.; Mellado, R.; Tapia, F.; Gabrielli, L.A.; Nogerol, C.; Chiong, M.; Godoy, I.; Lavandero, S. Xanthine-oxidase inhibitors and statins in chronic heart failure: Effects on vascular and functional parameters. J. Heart Lung Transplant., 2011, 30(4), 408-413.
[39]
Becker, B.F. Towards the physiological function of uric acid. Free Radic. Biol. Med., 1993, 14(6), 615-631.
[40]
Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6), 608-619.
[41]
Glantzounis, G.K.; Tsimoyiannis, E.C.; Kappas, A.M.; Galaris, D.A. Uric acid and oxidative stress. Curr. Pharm. Des., 2005, 11(32), 4145-4151.
[42]
Simoyi, M.F.; Van Dyke, K.; Klandorf, H. Manipulation of plasma uric acid in broiler chicks and its effect on leukocyte oxidative activity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(3), R791-R796.
[43]
Machín, M.; Simoyi, M.F.; Blemings, K.P.; Klandorf, H. Increased dietary protein elevates plasma uric acid and is associated with decreased oxidative stress in rapidly-growing broilers. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2004, 137(3), 383-390.
[44]
Carro, M.; Falkenstein, E.; Radke, W.; Klandorf, H. Effects of allopurinol on uric acid concentrations, xanthine oxidoreductase activity and oxidative stress in broiler chickens. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2010, 151(1), 12-17.
[45]
Seaman, C.; Moritz, J.; Falkenstein, E.; Van Dyke, K.; Casotti, G.; Klandorf, H. Inosine ameliorates the effects of hemin-induced oxidative stress in broilers. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2008, 151(4), 670-675.
[46]
Settle, T.; Klandorf, H. The role of uric acid as an antioxidant in selected neurodegenerative disease pathogenesis: A short review. Brain Disord. Ther., 2014, 3, 129.
[47]
Sevanian, A.; Davies, K.J.; Hochstein, P. Serum urate as an antioxidant for ascorbic acid. Am. J. Clin. Nutr., 1991, 54(6)(Suppl.), 1129S-1134S.
[48]
Mikami, T.; Sorimachi, M. Uric acid contributes greatly to hepatic antioxidant capacity besides protein. Physiol. Res., 2017, 66(6), 1001-1007.
[49]
Cutler, R.G. Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Arch. Gerontol. Geriatr., 1984, 3(4), 321-348.
[50]
Tasaki, E.; Sakurai, H.; Nitao, M.; Matsuura, K.; Iuchi, Y. Uric acid, an important antioxidant contributing to survival in termites. PLoS One, 2017, 12(6), e0179426.
[51]
Taghizadeh, N.; Vonk, J.M.; Boezen, H.M. Serum uric acid levels and cancer mortality risk among males in a large general population-based cohort study. Cancer Causes Control, 2014, 25(8), 1075-1080.
[52]
Massa, J.; O’Reilly, E.; Munger, K.L.; Delorenze, G.N.; Ascherio, A. Serum uric acid and risk of multiple sclerosis. J. Neurol., 2009, 256(10), 1643-1648.
[53]
Sotgiu, S.; Pugliatti, M.; Sanna, A.; Sotgiu, A.; Fois, M.L.; Arru, G.; Rosati, G. Serum uric acid and multiple sclerosis. Neurol. Sci., 2002, 23(4), 183-188.
[54]
Keizman, D.; Ish-Shalom, M.; Berliner, S.; Maimon, N.; Vered, Y.; Artamonov, I.; Tsehori, J.; Nefussy, B.; Drory, V.E. low uric acid levels in serum of patients with ALS: Further evidence for oxidative stress? J. Neurol. Sci., 2009, 285(1-2), 95-99.
[55]
Andreadou, E.; Nikolaou, C.; Gournaras, F.; Rentzos, M.; Boufidou, F.; Tsoutsou, A.; Zournas, C.; Zissimopoulos, V.; Vassilopoulos, D. Serum uric acid levels in patients with Parkinson’s disease: Their relationship to treatment and disease duration. Clin. Neurol. Neurosurg., 2009, 111(9), 724-728.
[56]
Wen, M.; Zhou, B.; Chen, Y.H.; Ma, Z.L.; Gou, Y.; Zhang, C.L.; Yu, W.F.; Jiao, L. Serum Uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS One, 2017, 12(3), e0173731.
[57]
Du, N.; Xu, D.; Hou, X.; Song, X.; Liu, C.; Chen, Y.; Wang, Y.; Li, X. Inverse association between serum uric acid levels and Alzheimer’s disease risk. Mol. Neurobiol., 2016, 53(4), 2594-2599.
[58]
Euser, S.M.; Hofman, A.; Westendorp, R.G.J.; Breteler, M.M.B. Serum uric acid and cognitive function and dementia. Brain, 2009, 132(2), 377-382.
[59]
Yao, J.K.; Reddy, R.; van Kammen, D.P. Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res., 1998, 80(1), 29-39.
[60]
Mahajan, M.; Kaur, S.; Mahajan, S.; Kant, R. Uric acid a better scavenger of free radicals than vitamin c in rheumatoid arthritis. Indian J. Clin. Biochem., 2009, 24(2), 205-207.
[61]
Yamakado, M.; Toda, A.; Tani, M.; Ishizaka, N.; Ishizaka, N. Relationship between serum uric acid and serum oxidative stress markers in the Japanese general population. Nephron Clin. Pract., 2014, 128(1-2), 49-56.
[62]
Waring, W.S.; Webb, D.J.; Maxwell, S.R. Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J. Cardiovasc. Pharmacol., 2001, 38(3), 365-371.
[63]
Li, H.Z.; Chen, Z.; Hou, C.L.; Tang, Y.X.; Wang, F.; Fu, Q.G. Uric acid promotes osteogenic differentiation and inhibits adipogenic differentiation of human bone mesenchymal stem cells. J. Biochem. Mol. Toxicol., 2015, 29(8), 382-387.
[64]
Mody, N.; Parhami, F.; Sarafian, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med., 2001, 31(4), 509-519.
[65]
Bai, X.C.; Lu, D.; Bai, J.; Zheng, H.; Ke, Z-Y.; Li, X-M.; Luo, S.Q. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-JB. Biochem. Biophys. Res. Commun., 2004, 314, 197-207.
[66]
Ihara, H.; Hashizume, N.; Hasegawa, T.; Yoshida, M. Antioxidant capacities of ascorbic acid, uric acid, α-tocopherol, and bilirubin can be measured in the presence of another antioxidant, serum albumin. J. Clin. Lab. Anal., 2004, 18(1), 45-49.
[67]
Choi, K.M.; Seo, Y.K.; Yoon, H.H.; Song, K.Y.; Kwon, S.Y.; Lee, H.S.; Park, J.K. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J. Biosci. Bioeng., 2008, 105(6), 586-594.
[68]
Ahn, S.H.; Lee, S.H.; Kim, B.J.; Lim, K.H.; Bae, S.J.; Kim, E.H.; Kim, H.K.; Choe, J.W.; Koh, J.M.; Kim, G.S. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos. Int., 2013, 24(12), 2961-2970.
[69]
Zhang, D.; Bobulescu, I.A.; Maalouf, N.M.; Adams-Huet, B.; Poindexter, J.; Park, S.; Wei, F.; Chen, C.; Moe, O.W.; Sakhaee, K. Relationship between serum uric acid and bone mineral density in the general population and in rats with experimental hyperuricemia. J. Bone Miner. Res., 2015, 30(6), 992-999.
[70]
Liu, B.; Yang, N.; Xu, L.; Han, Y.; Li, P.; Ma, L.; Xin, Y.; Xian, Hao X.; Huang, H. The effects of uric acid on bone mesenchymal stem cells osteogenic differentiation. J. Appl. Sci. Eng. Innov., 2017, 4(2), 39-45.
[71]
Dalbeth, N.; Pool, B.; Chhana, A.; Lin, J.M.; Tay, M.L.; Tan, P.; Callon, K.E.; Naot, D.; Horne, A.; Drake, J.; Gamble, G.D.; Reid, I.R.; Grey, A.; Stamp, L.K.; Cornish, J. Lack of evidence that soluble urate directly influences bone remodelling: a laboratory and clinical study. Calcif. Tissue Int., 2018, 102(1), 73-84.
[72]
Komori, T. A fundamental transcription factor for bone and cartilage. Biochem. Biophys. Res. Commun., 2000, 276(3), 813-816.
[73]
Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R.T.; Gao, Y.H.; Inada, M.; Sato, M.; Okamoto, R.; Kitamura, Y.; Yoshiki, S.; Kishimoto, T. Targeted disruption of cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89(5), 755-764.
[74]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[75]
Baron, R.; Kneissel, M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat. Med., 2013, 19(2), 179-192.
[76]
Krishnan, V.; Bryant, H.U.; Macdougald, O.A. regulation of bone mass by wnt signaling. J. Clin. Invest., 2006, 116(5), 1202-1209.
[77]
Mbalaviele, G.; Sheikh, S.; Stains, J.P.; Salazar, V.S.; Cheng, S.L.; Chen, D.; Civitelli, R. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J. Cell. Biochem., 2005, 94(2), 403-418.
[78]
Wang, Y.; Li, Y.P.; Paulson, C.; Shao, J.Z.; Zhang, X.; Wu, M.; Chen, W. Wnt and the Wnt signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed), 2014, 19, 379-407.
[79]
Almeida, M.; Han, L.; Martin-Millan, M.; O’Brien, C.A.; Manolagas, S.C. Oxidative stress antagonizes wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem., 2007, 282(37), 27298-27305.
[80]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[81]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(39), 44-84.
[82]
Banfi, G.; Iorio, E.L.; Corsi, M.M. Oxidative stress, free radicals and bone remodeling. Clin. Chem. Lab. Med., 2008, 46(11), 1550-1555.
[83]
Cutler, R.G. Antioxidants and aging. Am. J. Clin. Nutr., 1991, 53(1)(Suppl.), 373S-379S.
[84]
Filaire, E.; Toumi, H. Reactive oxygen species and exercise on bone metabolism: friend or enemy? Joint Bone Spine, 2012, 79(4), 341-346.
[85]
Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Miner. Bone Metab., 2017, 14(2), 209-216.
[86]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[87]
Almeida, M.; O’Brien, C.A. Basic biology of skeletal aging: role of stress response pathways. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(10), 1197-1208.
[88]
Manolagas, S.C. From estrogen-centric to aging and oxidative Stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev., 2010, 31(3), 266-300.
[89]
Abdollahi, M.; Larijani, B.; Rahimi, R.; Salari, P. Role of oxidative stress in osteoporosis. Therapy, 2005, 2(5), 787-796.
[90]
Portal-Núñez, S.; de la Fuente, M.; Díez, A.; Esbrit, P. Oxidative stress as a possible therapeutic target for osteoporosis associated with aging. Rev. Osteoporos. Metab. Miner., 2016, 8(4), 138-146.
[91]
Maggio, D.; Barabani, M.; Pierandrei, M.; Polidori, M.C.; Catani, M.; Mecocci, P.; Senin, U.; Pacifici, R.; Cherubini, A. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J. Clin. Endocrinol. Metab., 2003, 88(4), 1523-1527.
[92]
Lin, X.; Zhao, C.; Qin, A.; Hong, D.; Liu, W.; Huang, K.; Mo, J.; Yu, H.; Wu, S.; Fan, S. Association between serum uric acid and bone health in general population: A large and multicentre study. Oncotarget, 2015, 6(34), 35395-35403.
[93]
Chen, L.; Peng, Y.; Fang, F.; Chen, J.; Pan, L.; You, L. Correlation of serum uric acid with bone mineral density and fragility fracture in patients with primary osteoporosis: A single-center retrospective study of 253 cases. Int. J. Clin. Exp. Med., 2015, 8(4), 6291-6294.
[94]
Dong, X.; Tian, H.; He, J.; Wang, C.; Qiu, R.; Chen, Y. Elevated Serum uric acid is associated with greater bone mineral density and skeletal muscle mass in middle-aged and older adults. PLoS One, 2016, 11(5), e0154692.
[95]
Yan, D.; Wang, J.; Hou, X.; Bao, Y.; Zhang, Z.; Hu, C.; Jia, W. Association of serum uric acid levels with osteoporosis and bone turnover markers in a chinese population. Acta Pharmacol. Sin., 2017, 39(4), 626-632.
[96]
Han, W.; Bai, X.J.; Wang, N.; Han, L.L.; Sun, X.F.; Chen, X.M. Association between Lumbar Bone mineral density and serum uric acid in postmenopausal women: A cross-sectional study of healthy chinese population. Arch. Osteoporos., 2017, 12(1), 9.
[97]
Xiao, J.; Chen, W.; Feng, X.; Liu, W.; Zhang, Z.; He, L.; Ye, Z. Serum uric acid is associated with lumbar spine bone mineral density in healthy chinese males older than 50 years. Clin. Interv. Aging, 2017, 12, 445-452.
[98]
Xu, M.; Su, J.; Hao, J.; Zhong, N.; Zhang, Z.; Cui, R.; Li, F.; Sheng, C.; Zhang, G.; Sheng, H.; Qu, S. Positive association between serum uric acid and bone mineral density in chinese type 2 diabetes mellitus stratified by gender and BMI. J. Bone Miner. Metab., 2018, 36(5), 609-619.
[99]
Zhao, D.D.; Jiao, P.L.; Yu, J.J.; Wang, X.J.; Zhao, L.; Xuan, Y.; Sun, L.H.; Tao, B.; Wang, W.Q.; Ning, G.; Liu, J.M.; Zhao, H.Y. Higher serum uric acid is associated with higher bone mineral density in chinese men with type 2 diabetes mellitus. Int. J. Endocrinol., 2016, 2016, 2528956.
[100]
Xiong, A.; Yao, Q.; He, J.; Fu, W.; Yu, J.; Zhang, Z. No causal effect of serum urate on bone-related outcomes among a population of postmenopausal women and elderly men of chinese han ethnicity-a mendelian randomization study. Osteoporos. Int., 2016, 27(3), 1031-1039.
[101]
Ishii, S.; Miyao, M.; Mizuno, Y.; Tanaka-Ishikawa, M.; Akishita, M.; Ouchi, Y. Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Osteoporos. Int., 2014, 25(3), 1099-1105.
[102]
Kim, B.J.; Baek, S.; Ahn, S.H.; Kim, S.H.; Jo, M.W.; Bae, S.J.; Kim, H.K.; Choe, J.; Park, G.M.; Kim, Y.H.; Lee, S.H.; Kim, G.S.; Koh, J.M. Higher serum uric acid as a protective factor against incident osteoporotic fractures in korean men: A longitudinal study using the national claim registry. Osteoporos. Int., 2014, 25(7), 1837-1844.
[103]
Kim, S.; Jung, J.; Jung, J.H.; Kim, S.K.; Kim, R.B.; Hahm, J.R. Risk factors of bone mass loss at the lumbar spine: A longitudinal study in healthy korean pre- and perimenopausal women older than 40 years. PLoS One, 2015, 10(8), e0136283.
[104]
Hwang, J.; Hwang, J.H.; Ryu, S.; Ahn, J.K. Higher serum uric acid is associated with higher lumbar spine bone mineral density in male health-screening examinees: A cross-sectional study. J. Bone Miner. Metab., 2019, 37(1), 142-151.
[105]
Lee, Y.J.; Hong, J.Y.; Kim, S.C.; Joo, J.K.; Na, Y.J.; Lee, K.S. The association between oxidative stress and bone mineral density according to menopausal status of korean women. Obstet. Gynecol. Sci., 2015, 58(1), 46-52.
[106]
Kang, K.Y.; Hong, Y.S.; Park, S.H.; Ju, J.H. Low levels of serum uric acid increase the risk of low bone mineral density in young male patients with ankylosing spondylitis. J. Rheumatol., 2015, 42(6), 968-974.
[107]
Joo, S.H.; Kim, M.T.; Cho, J.H.; Lee, H.K.; Ahn, J.O. Blood levels related to the z-score of bone mineral density in young males and females. J. Phys. Ther. Sci., 2015, 27(4), 1117-1120.
[108]
Sritara, C.; Ongphiphadhanakul, B.; Chailurkit, L.; Yamwong, S.; Ratanachaiwong, W.; Sritara, P. Serum uric acid levels in relation to bone-related phenotypes in men and women. J. Clin. Densitom., 2013, 16(3), 336-340.
[109]
Muka, T.; De Jonge, E.A.L.; Kiefte-De Jong, J.C.; Uitterlinden, A.G.; Hofman, A.; Dehghan, A.; Carola Zillikens, M.; Franco, O.H.; Rivadeneira, F. The Influence of Serum Uric Acid on Bone Mineral Density, Hip Geometry, and Fracture Risk: The Rotterdam Study. J. Clin. Endocrinol. Metab., 2016, 101(3), 1113-1122.
[110]
Kuyumcu, M.E.; Yesil, Y.; Oztürk, Z.A.; Cinar, E.; Kizilarslanoglu, C.; Halil, M.; Ulger, Z.; Yesil, N.K.; Cankurtaran, M.; Arioĝul, S. The association between homocysteine (Hcy) and serum natural antioxidants in elderly bone mineral densitometry (BMD). Arch. Gerontol. Geriatr., 2012, 55(3), 739-743.
[111]
Veronese, N.; Bolzetta, F.; De Rui, M.; Maggi, S.; Noale, M.; Zambon, S.; Corti, M.C.; Toffanello, E.D.; Baggio, G.; Perissinotto, E.; Crepaldi, G.; Manzato, E.; Sergi, G. Serum uric acid and incident osteoporotic fractures in old people: The PRO.V.A study. Bone, 2015, 79, 183-189.
[112]
Pirro, M.; Mannarino, M.R.; Bianconi, V.; De Vuono, S.; Sahebkar, A.; Bagaglia, F.; Franceschini, L.; Scarponi, A.M.; Mannarino, E.; Merriman, T. Uric acid and bone mineral density in postmenopausal osteoporotic women: The link lies within the fat. Osteoporos. Int., 2017, 28(3), 973-981.
[113]
Bhupathiraju, S.N.; Alekel, D.L.; Stewart, J.W.; Hanson, L.N.; Shedd, K.M.; Reddy, M.B.; Hanson, K.B.; Van Loan, M.D.; Genschel, U.; Koehler, K.J. Relationship of circulating total homocysteine and c-reactive protein to trabecular bone in postmenopausal women. J. Clin. Densitom., 2007, 10(4), 395-403.
[114]
Lane, N.E.; Parimi, N.; Lui, L.Y.; Wise, B.L.; Yao, W.; Lay, Y.A.E.; Cawthon, P.M.; Orwoll, E. Association of serum uric acid and incident nonspine fractures in elderly men: The osteoporotic fractures in men (MrOS) study. J. Bone Miner. Res., 2014, 29(7), 1701-1707.
[115]
Dalbeth, N.; Topless, R.; Flynn, T.; Cadzow, M.; Bolland, M.J.; Merriman, T.R. Mendelian randomization analysis to examine for a causal effect of urate on bone mineral density. J. Bone Miner. Res., 2015, 30(6), 985-991.
[116]
Mehta, T.; Bůžková, P.; Sarnak, M.J.; Chonchol, M.; Cauley, J.A.; Wallace, E.; Fink, H.A.; Robbins, J.; Jalal, D. Serum urate levels and the risk of hip fractures: data from the cardiovascular health study. Metabolism, 2015, 64(3), 438-446.
[117]
Makovey, J.; Macara, M.; Chen, J.S.; Hayward, C.S.; March, L.; Seibel, M.J.; Sambrook, P.N. Serum uric acid plays a protective role for bone loss in peri- and postmenopausal women: a longitudinal study. Bone, 2013, 52(1), 400-406.
[118]
Lei, S.F.; Chen, Y.; Xiong, D.H.; Li, L.M.; Deng, H.W. Ethnic difference in osteoporosis-related phenotypes and its potential underlying genetic determination. J. Musculoskelet. Neuronal Interact., 2006, 6(1), 36-46.
[119]
Anderson, J.J.; Pollitzer, W.S. Ethnic and genetic differences in susceptibility to osteoporotic fractures. Adv. Nutr. Res., 1994, 9, 129-149.
[120]
Zengin, A.; Prentice, A.; Ward, K.A. Ethnic differences in bone health. Front. Endocrinol. (Lausanne), 2015, 6, 24.
[121]
Leslie, W.D. Ethnic differences in bone mass-clinical implications. J. Clin. Endocrinol. Metab., 2012, 97(12), 4329-4340.
[122]
Musumeci, M.; Vadalà, G.; Tringali, G.; Insirello, E.; Roccazzello, A.M.; Simpore, J.; Musumeci, S. Genetic and environmental factors in human osteoporosis from sub-saharan to mediterranean areas. J. Bone Miner. Metab., 2009, 27(4), 424-434.
[123]
Cauley, J.A. Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin. Orthop. Relat. Res., 2011, 469, 1891-1899.
[124]
Thomas, P.A. Racial and ethnic differences in osteoporosis. J. Am. Acad. Orthop. Surg., 2007, 15(Suppl. 1), S26-S30.