Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Selective Photodynamic Effects on Breast Cancer Cells Provided by p123 Pluronic®- Based Nanoparticles Modulating Hypericin Delivery

Author(s): Gabrielle Marconi Zago Ferreira Damke, Raquel Pantarotto Souza, Maiara Camotti Montanha, Edilson Damke, Renato Sonchini Gonçalves, Gabriel Batista César, Elza Kimura, Wilker Caetano, Noboru Hioka and Marcia Edilaine Lopes Consolaro*

Volume 20, Issue 11, 2020

Page: [1352 - 1367] Pages: 16

DOI: 10.2174/1871520618666181102091010

Price: $65

Abstract

Background: Breast cancer is the most relevant type of cancer and the second cause of cancer- related deaths among women in general. Currently, there is no effective treatment for breast cancer although advances in its initial diagnosis and treatment are available. Therefore, the value of novel anti-tumor therapeutic modalities remains an immediate unmet need in clinical practice. Following our previous work regarding the properties of the Pluronics with different photosensitizers (PS) for photodynamic therapy (PDT), in this study we aimed to evaluate the efficacy of supersaturated hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) against breast cancer cells (MCF-7) and non-tumorigenic breast cells (MCF-10A).

Methods: Cell internalization and subcellular distribution of HYP/P123 was confirmed by fluorescence microscopy. The phototoxicity and citototoxicity of HYP/P123 was assessed by trypan blue exclusion assay in the presence and absence of light. Long-term cytotoxicity was performed by clonogenic assay. Cell migration was determined by the wound-healing assay. Apoptosis and necrosis assays were performed by annexin VFITC/ propidium Iodide (PI) by fluorescence microscopy.

Results: Our results showed that HYP/P123 micelles had high stability and high rates of binding to cells, which resulted in the selective internalization in MCF-7, indicating their potential to permeate the membrane of these cells. Moreover, HYP/P123 micelles accumulated in mitochondria and endoplasmic reticulum organelles, resulting in the photodynamic cell death by necrosis. Additionally, HYP/P123 micelles showed effective and selective time- and dose dependent phototoxic effects on MCF-7 cells but little damage to MCF-10A cells. HYP/P123 micelles inhibited the generation of cellular colonies, indicating a possible capability to prevent the recurrence of breast cancer. We also demonstrated that HYP/P123 micelles inhibit the migration of tumor cells, possibly by decreasing their ability to form metastases.

Conclusion: Taken together, the results presented here indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat human breast cancers through photodynamic therapy, suggesting they are worthy for in vivo preclinical evaluations.

Keywords: Selective photodynamic effect, breast cancer cells, hypericin, Pluronic® P123, micelles, nanoparticles.

Graphical Abstract

[1]
WHO; 2012. GLOBOCAN 2012:, Estimated Cancer Incidence;Mortality and Prevalence Worldwide,. 2012.
[2]
Ward, E.M.; DeSantis, C.E.; Lin, C.C.; Kramer, J.L.; Jemal, A.; Kohler, B.; Brawley, O.W.; Gansler, T. Cancer statistics: Breast cancer in situ. CA Cancer J. Clin., 2015, 65(6), 481-495.
[http://dx.doi.org/10.3322/caac.21321] [PMID: 26431342]
[3]
Guestini, F.; McNamara, K.M.; Ishida, T.; Sasano, H. Triple negative breast cancer chemosensitivity and chemoresistance: Current advances in biomarkers indentification. Expert Opin. Ther. Targets, 2016, 20(6), 705-720.
[http://dx.doi.org/10.1517/14728222.2016.1125469] [PMID: 26607563]
[4]
Madeddu, C.; Deidda, M.; Piras, A.; Cadeddu, C.; Demurtas, L.; Puzzoni, M.; Piscopo, G.; Scartozzi, M.; Mercuro, G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J. Cardiovasc. Med. (Hagerstown), 2016, 17, e12-e18.
[http://dx.doi.org/10.2459/JCM.0000000000000376] [PMID: 27755238]
[5]
Dougherty, T.J. Photodynamic therapy. Photochem. Photobiol., 1993, 58(6), 895-900.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb04990.x] [PMID: 8310013]
[6]
Hopper, C. Photodynamic therapy: A clinical reality in the treatment of cancer. Lancet Oncol., 2000, 1(4), 212-219.
[http://dx.doi.org/10.1016/S1470-2045(00)00166-2] [PMID: 11905638]
[7]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[8]
Calzavara-Pinton, P.G.; Venturini, M.; Sala, R. Photodynamic therapy: Update 2006. Part 1: Photochemistry and photobiology. J. Eur. Acad. Dermatol. Venereol., 2007, 21(3), 293-302.
[http://dx.doi.org/10.1111/j.1468-3083.2006.01902.x] [PMID: 17309449]
[9]
Fuchs, J.; Thiele, J. The role of oxygen in cutaneous photodynamic therapy. Free Radic. Biol. Med., 1998, 24(5), 835-847.
[http://dx.doi.org/10.1016/S0891-5849(97)00370-5] [PMID: 9586814]
[10]
Ochsner, M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B, 1997, 39(1), 1-18.
[http://dx.doi.org/10.1016/S1011-1344(96)07428-3] [PMID: 9210318]
[11]
De-Oliveira, K.T.; De-Souza, J.M.; Da-Silva Gobo, N.R.; Fávaro-de-Assis, F.; Brocksom, T.J. Fundamental concepts and applications of porphyrins, chlorins and phthalocyanines photosensitizers in photonic therapies. Rev. Virtual Quím., 2014, 7(1), 310-335.
[12]
Galanou, M.C.; Theodossiou, T.A.; Tsiourvas, D.; Sideratou, Z.; Paleos, C.M. Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition. Photochem. Photobiol., 2008, 84(5), 1073-1083.
[PMID: 18627515]
[13]
Huang, L.F.; Wang, Z.H.; Chen, S.L. Hypericin: Chemical synthesis and biosynthesis. Chin. J. Nat. Med., 2014, 12(2), 81-88.
[http://dx.doi.org/10.1016/S1875-5364(14)60014-5] [PMID: 24636057]
[14]
Ebermann, R.; Alth, G.; Kreitner, M.; Kubin, A. Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. J. Photochem. Photobiol. B, 1996, 36(2), 95-97.
[http://dx.doi.org/10.1016/S1011-1344(96)07353-8] [PMID: 9002245]
[15]
Falk, H. From the photosensitizer hypericin to the photoreceptor stentorin—the chemistry of phenanthroperylene quinones. Angew. Chem. Int. Ed. Engl., 1999, 38(21), 3116-3136.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991102)38:21<3116:AID-ANIE3116>3.0.CO;2-S] [PMID: 10556884]
[16]
Agostinis, P.; Vantieghem, A.; Merlevede, W.; de Witte, P.A. Hypericin in cancer treatment: more light on the way. Int. J. Biochem. Cell Biol., 2002, 34(3), 221-241.
[http://dx.doi.org/10.1016/S1357-2725(01)00126-1] [PMID: 11849990]
[17]
Kiesslich, T.; Krammer, B.; Plaetzer, K. Cellular mechanisms and prospective applications of hypericin in photodynamic therapy. Curr. Med. Chem., 2006, 13(18), 2189-2204.
[http://dx.doi.org/10.2174/092986706777935267] [PMID: 16918348]
[18]
Karioti, A.; Bilia, A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci., 2010, 11(2), 562-594.
[http://dx.doi.org/10.3390/ijms11020562] [PMID: 20386655]
[19]
Wirz, A.; Meier, B.; Sticher, O. Solubility of hypericin in methanol and methanol-pyridine. Pharmazie, 2002, 57(8), 543-545.
[PMID: 12227194]
[20]
Kubin, A.; Loew, H.G.; Burner, U.; Jessner, G.; Kolbabek, H.; Wierrani, F. How to make hypericin water-soluble. Pharmazie, 2008, 63(4), 263-269.
[PMID: 18468384]
[21]
Saw, C.L.L.; Olivo, M.; Soo, K.C.; Heng, P.W.S. Delivery of hypericin for photodynamic applications. Cancer Lett., 2006, 241(1), 23-30.
[http://dx.doi.org/10.1016/j.canlet.2005.10.020] [PMID: 16303248]
[22]
Tatischeff, I.; Alfsen, A. A new biological strategy for drug delivery: Eucaryotic cell-derived nanovesicles. J. Biomater. Nanobiotechnol., 2011, 2(5), 494.
[http://dx.doi.org/10.4236/jbnb.2011.225060]
[23]
Davoudi, Z.; Peroutka-Bigus, N.; Bellaire, B.; Wannemuehler, M.; Barrett, T.A.; Narasimhan, B.; Wang, Q. Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J. Biomed. Mater. Res. A, 2018, 106(4), 876-886.
[http://dx.doi.org/10.1002/jbm.a.36305] [PMID: 29226615]
[24]
Di, J.; Yu, J.; Wang, Q.; Yao, S.; Suo, D.; Ye, Y.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res., 2017, 10(4), 1393-1402.
[http://dx.doi.org/10.1007/s12274-017-1500-z]
[25]
Zhang, X.; Zhang, H.; Yin, L.; Hu, R.; Qiu, T.; Yin, Y.; Xiong, X.; Zheng, H.; Wang, Q. A pH-sensitive nanosystem based on carboxymethyl chitosan for tumor-targeted delivery of daunorubicin. J. Biomed. Nanotechnol., 2016, 12(8), 1688-1698.
[http://dx.doi.org/10.1166/jbn.2016.2278] [PMID: 29342347]
[26]
Cao, J.; Wang, R.; Gao, N.; Li, M.; Tian, X.; Yang, W.; Ruan, Y.; Zhou, C.; Wang, G.; Liu, X.; Tang, S.; Yu, Y.; Liu, Y.; Sun, G.; Peng, H.; Wang, Q. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater. Sci., 2015, 3(12), 1545-1554.
[http://dx.doi.org/10.1039/C5BM00161G] [PMID: 26291480]
[27]
Wang, Q.; Cheng, H.; Peng, H.; Zhou, H.; Li, P.Y.; Langer, R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv. Drug Deliv. Rev., 2015, 91, 125-140.
[http://dx.doi.org/10.1016/j.addr.2014.12.003] [PMID: 25543006]
[28]
Peng, H.; Wang, C.; Xu, X.; Yu, C.; Wang, Q. An intestinal Trojan horse for gene delivery. Nanoscale, 2015, 7(10), 4354-4360.
[http://dx.doi.org/10.1039/C4NR06377E] [PMID: 25619169]
[29]
Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Synthesis and in vitro characterization of carboxymethyl chitosan-CBA-doxorubicin conjugate nanoparticles as pH-sensitive drug delivery systems. J. Biomed. Nanotechnol., 2017, 13(9), 1097-1105.
[http://dx.doi.org/10.1166/jbn.2017.2407] [PMID: 31251142]
[30]
Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Self-assembled hyaluronic acid nanoparticles for pH-sensitive release of doxorubicin: Synthesis and in vitro characterization. J. Biomed. Nanotechnol., 2017, 13(9), 1058-1068.
[http://dx.doi.org/10.1166/jbn.2017.2406] [PMID: 31251139]
[31]
Zheng, H.; Yin, L.; Zhang, X.; Zhang, H.; Hu, R.; Yin, Y.; Qiu, T.; Xiong, X.; Wang, Q. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor-targeted drug delivery. J. Biomed. Nanotechnol., 2016, 12(8), 1641-1653.
[http://dx.doi.org/10.1166/jbn.2016.2279] [PMID: 29342343]
[32]
Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond.), 2016, 11(9), 1169-1185.
[http://dx.doi.org/10.2217/nnm.16.9] [PMID: 27074098]
[33]
Kwon, G.S. Polymeric Drug Delivery Systems, 1st ed; CRC Press: Boca Raton, 2005.
[http://dx.doi.org/10.1201/9780849348129]
[34]
Gohy, J-F. Block Copolymers II;; Abetz, V., Ed.;. Springer Berlin Heidelberg: Berlin, , 2005, pp. 65-136.
[http://dx.doi.org/10.1007/12_048]
[35]
Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromolecules, 1994, 27(9), 2414-2425.
[http://dx.doi.org/10.1021/ma00087a009]
[36]
Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release, 2008, 130(2), 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[37]
Akash, M.S.H.; Rehman, K. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J. Control. Release, 2015, 209, 120-138.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.032] [PMID: 25921088]
[38]
Jindal, N.; Mehta, S.K. Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: Optimization of formulation and in vitro evaluation. Colloids Surf. B Biointerfaces, 2015, 129, 100-106.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.030] [PMID: 25839908]
[39]
Chen, Y.; Zhang, W.; Huang, Y.; Gao, F.; Sha, X.; Fang, X. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int. J. Pharm., 2015, 488(1-2), 44-58.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.048] [PMID: 25899286]
[40]
Vilsinski, B.H.; Gerola, A.P.; Enumo, J.A.; Campanholi, K.S.; Pereira, P.C.S.; Braga, G.; Hioka, N.; Kimura, E.; Tessaro, A.L.; Caetano, W. Formulation of aluminum chloride phthalocyanine in Pluronic(™) P-123 and F-127 block copolymer micelles: Photophysical properties and photodynamic inactivation of microorganisms. Photochem. Photobiol., 2015, 91(3), 518-525.
[http://dx.doi.org/10.1111/php.12421] [PMID: 25644689]
[41]
Vilsinski, B.H.; Aparicio, J.L.; Pereira, P.C.D.S.; Fávaro, S.L.; Campanholi, K.S.S.; Gerola, A.P.; Tessaro, A.L.; Hioka, N.; Caetano, W. Physico-chemical properties of meso-tetrakis (p-methoxyphenyl) porphyrin (TMPP) incorporated into pluronicTM p-123 and f-127 polymeric micelles. Quim. Nova, 2014, 37(10), 1650-1656.
[42]
Montanha, M.C.; Silva, L.L.; Pangoni, F.B.B.; Cesar, G.B.; Gonçalves, R.S.; Caetano, W.; Hioka, N.; Tominaga, T.T.; Consolaro, M.E.L.; Diniz, A.; Kimura, E. Response surface method optimization of a novel Hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy. J. Photochem. Photobiol. B, 2017, 170, 247-255.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.008] [PMID: 28454049]
[43]
Zhang, X.; Jackson, J.K.; Burt, H.M. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int. J. Pharm., 1996, 132(1), 195-206.
[http://dx.doi.org/10.1016/0378-5173(95)04386-1]
[44]
Bánó, G.; Staničová, J.; Jancura, D.; Marek, J.; Bánó, M.; Uličný, J.; Strejčková, A.; Miškovský, P. On the diffusion of hypericin in dimethylsulfoxide/water mixtures-the effect of aggregation. J. Phys. Chem. B, 2011, 115(10), 2417-2423.
[http://dx.doi.org/10.1021/jp109661c] [PMID: 21332112]
[45]
Strober, W. Current Protocols in Immunology; John Wiley & Sons, Inc., 2001.
[46]
Shi, X.; Liu, D.; Zhang, J.; Hu, P.; Shen, W.; Fan, B.; Ma, Q.; Wang, X. Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro. BMC Complement. Altern. Med., 2016, 16(1), 245.
[http://dx.doi.org/10.1186/s12906-016-1249-z] [PMID: 27461104]
[47]
Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[48]
Iqbal, B.; Ghildiyal, A.; Sahabjada, S.S.; Singh, S.; Arshad, M.; Mahdi, A.A.; Tiwari, S. Antiproliferative and apoptotic effect of curcumin and TRAIL (TNF Related Apoptosis inducing Ligand) in chronic myeloid leukaemic cells. J. Clin. Diagn. Res., 2016, 10(4), XC01-XC05.
[http://dx.doi.org/10.7860/JCDR/2016/18507.7579] [PMID: 27190933]
[49]
McCloy, R.A.; Rogers, S.; Caldon, C.E.; Lorca, T.; Castro, A.; Burgess, A. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle, 2014, 13(9), 1400-1412.
[http://dx.doi.org/10.4161/cc.28401] [PMID: 24626186]
[50]
Gary, R.K.; Kindell, S.M. Quantitative assay of senescence-associated β-galactosidase activity in mammalian cell extracts. Anal. Biochem., 2005, 343(2), 329-334.
[http://dx.doi.org/10.1016/j.ab.2005.06.003] [PMID: 16004951]
[51]
Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc., 2007, 2(2), 329-333.
[http://dx.doi.org/10.1038/nprot.2007.30] [PMID: 17406593]
[52]
Gonçalves, R.S.; Silva, E.L.; Hioka, N.; Nakamura, C.V.; Bruschi, M.L.; Caetano, W. An optimized protocol for anthraquinones isolation from Rhamnus frangula L. Nat. Prod. Res., 2017, 32(3), 1-4.
[PMID: 28745519]
[53]
Pietrzak, M.; Maciejczyk, M.; Szabelski, M.; Kasparek, A.; Wieczorek, Z. Self-association of hypericin analyzed by light absorption and fluorescence spectroscopy and molecular dynamics simulations. Chem. Phys. Lett., 2014, 601, 39-44.
[http://dx.doi.org/10.1016/j.cplett.2014.03.076]
[54]
Yamazaki, T.; Ohta, N.; Yamazaki, I.; Song, P.S. Excited-state properties of hypericin: Electronic spectra and fluorescence decay kinetics. J. Phys. Chem., 1993, 97(30), 7870-7875.
[http://dx.doi.org/10.1021/j100132a013]
[55]
Kascakova, S.; Refregiers, M.; Jancura, D.; Sureau, F.; Maurizot, J.C.; Miskovsky, P. Fluorescence spectroscopic study of hypericin-photosensitized oxidation of low-density lipoproteins. Photochem. Photobiol., 2005, 81(6), 1395-1403.
[http://dx.doi.org/10.1562/2005-04-28-RA-503] [PMID: 15960595]
[56]
Nakajima, N.; Kawashima, N. A basic study on hypericin-PDT in vitro. Photodiagn. Photodyn. Ther., 2012, 9(3), 196-203.
[http://dx.doi.org/10.1016/j.pdpdt.2012.01.008] [PMID: 22959799]
[57]
Theodossiou, T.A.; Hothersall, J.S.; De Witte, P.A.; Pantos, A.; Agostinis, P. The multifaceted photocytotoxic profile of hypericin. Mol. Pharm., 2009, 6(6), 1775-1789.
[http://dx.doi.org/10.1021/mp900166q] [PMID: 19739671]
[58]
Sattler, S.; Schaefer, U.; Schneider, W.; Hoelzl, J.; Lehr, C.M. Binding, uptake, and transport of hypericin by Caco-2 cell monolayers. J. Pharm. Sci., 1997, 86(10), 1120-1126.
[http://dx.doi.org/10.1021/js970004a] [PMID: 9344168]
[59]
Ho, Y-F.; Wu, M-H.; Cheng, B-H.; Chen, Y-W.; Shih, M-C. Lipid-mediated preferential localization of hypericin in lipid membranes. Biochim. Biophys. Acta, 2009, 1788(6), 1287-1295.
[http://dx.doi.org/10.1016/j.bbamem.2009.01.017] [PMID: 19366588]
[60]
Chen, B.; de Witte, P.A. Photodynamic therapy efficacy and tissue distribution of hypericin in a mouse P388 lymphoma tumor model. Cancer Lett., 2000, 150(1), 111-117.
[http://dx.doi.org/10.1016/S0304-3835(99)00381-X] [PMID: 10755394]
[61]
Hezaveh, S.; Samanta, S.; De Nicola, A.; Milano, G.; Roccatano, D. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations. J. Phys. Chem. B, 2012, 116(49), 14333-14345.
[http://dx.doi.org/10.1021/jp306565e] [PMID: 23137298]
[62]
Johnsson, M.; Silvander, M.; Karlsson, G.; Edwards, K. Effect of PEO− PPO− PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes. Langmuir, 1999, 15(19), 6314-6325.
[http://dx.doi.org/10.1021/la990288+]
[63]
Firestone, M.A.; Wolf, A.C.; Seifert, S. Small-angle X-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers. Biomacromolecules, 2003, 4(6), 1539-1549.
[http://dx.doi.org/10.1021/bm034134r] [PMID: 14606878]
[64]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev., 2002, 54(5), 759-779.
[http://dx.doi.org/10.1016/S0169-409X(02)00047-9] [PMID: 12204601]
[65]
Alakhova, D.Y.; Rapoport, N.Y.; Batrakova, E.V.; Timoshin, A.A.; Li, S.; Nicholls, D.; Alakhov, V.Y.; Kabanov, A.V. Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers. J. Control. Release, 2010, 142(1), 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.026] [PMID: 19815037]
[66]
Batrakova, E.V.; Li, S.; Brynskikh, A.M.; Sharma, A.K.; Li, Y.; Boska, M.; Gong, N.; Mosley, R.L.; Alakhov, V.Y.; Gendelman, H.E.; Kabanov, A.V. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J. Control. Release, 2010, 143(3), 290-301.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.004] [PMID: 20074598]
[67]
Vantieghem, A.; Xu, Y.; Declercq, W.; Vandenabeele, P.; Denecker, G.; Vandenheede, J.R.; Merlevede, W.; de Witte, P.A.; Agostinis, P. Different pathways mediate cytochrome c release after photodynamic therapy with hypericin. Photochem. Photobiol., 2001, 74(2), 133-142.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0133:DPMCCR> 2.0.CO;2] [PMID: 11547546]
[68]
Vantieghem, A.; Assefa, Z.; Vandenabeele, P.; Declercq, W.; Courtois, S.; Vandenheede, J.R.; Merlevede, W.; de Witte, P.; Agostinis, P. Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis. FEBS Lett., 1998, 440(1-2), 19-24.
[http://dx.doi.org/10.1016/S0014-5793(98)01416-1] [PMID: 9862416]
[69]
Kamuhabwa, A.R.; Agostinis, P.M.; D’Hallewin, M.A.; Baert, L.; de Witte, P.A. Cellular photodestruction induced by hypericin in AY-27 rat bladder carcinoma cells. Photochem. Photobiol., 2001, 74(2), 126-132.
[http://dx.doi.org/10.1562/0031-8655(2001)074<0126:CPIBHI>2.0. CO;2] [PMID: 11547545]
[70]
Mikeš, J.; Kleban, J.; Sacková, V.; Horváth, V.; Jamborová, E.; Vaculová, A.; Kozubík, A.; Hofmanová, J.; Fedoročko, P. Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin. Photochem. Photobiol. Sci., 2007, 6(7), 758-766.
[http://dx.doi.org/10.1039/B700350A] [PMID: 17609769]
[71]
Lavie, G.; Kaplinsky, C.; Toren, A.; Aizman, I.; Meruelo, D.; Mazur, Y.; Mandel, M. A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: Possible relevance to photodynamic therapy. Br. J. Cancer, 1999, 79(3-4), 423-432.
[http://dx.doi.org/10.1038/sj.bjc.6690066] [PMID: 10027308]
[72]
Banerjee, K.; Mandal, M. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells. Redox Biol., 2015, 5, 153-162.
[http://dx.doi.org/10.1016/j.redox.2015.04.009] [PMID: 25965143]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy