Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

How Often are Orphan Drugs Orphaned by the Thermochemical Community?

Author(s): Kathleen F. Edwards* and Joel F. Liebman*

Volume 27, Issue 1, 2020

Page: [23 - 31] Pages: 9

DOI: 10.2174/0929867325666181101120058

Price: $65

Abstract

Orphan drug products (e.g. drugs and biologics) in the United States are those that treat people with rare chronic diseases, often cancer or metabolic disease. The rare disease condition being treated by these orphan drugs must serve a patient population of less than 200,000 people in the U.S. in order to earn the orphan drug product title. Just as the disease conditions are seen as “orphans,” so, we assert is the thermochemical understanding of the drugs themselves in terms of the chemical structures that define those drugs. This article illustrates this orphan thermochemical status for a recent series of orphan drugs.

Keywords: Orphan drug products, thermochemical, orfadin, fabrazyme, metabolic disease, thermo-chemical drugs.

[1]
Haffner, M.E. Adopting orphan drugs--two dozen years of treating rare diseases. N. Engl. J. Med., 2006, 354(5), 445-447.
[http://dx.doi.org/10.1056/NEJMp058317] [PMID: 16452556]
[3]
Braun, M.M.; Farag-El-Massah, S.; Xu, K.; Coté, T.R. Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years. Nat. Rev. Drug Discov., 2010, 9(7), 519-522.
[http://dx.doi.org/10.1038/nrd3160] [PMID: 20531273]
[4]
Divino, V. DeKoven, Kleinrock, M., Wade, R.L., Kaura, S. Orphan drug expenditures in the United States: A historical and prospective analysis. Health Aff. (Millwood), 2016, 35(9), 1588-1594.
[http://dx.doi.org/10.1377/hlthaff.2016.0030] [PMID: 27605637]
[5]
Wästfelt, M.; Fadeel, B.; Henter, J-I. A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J. Intern. Med., 2006, 260(1), 1-10.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01666.x] [PMID: 16789973]
[6]
Wellman-Labadie, O.; Zhou, Y. The US Orphan Drug Act: rare disease research stimulator or commercial opportunity? Health Policy, 2010, 95(2-3), 216-228.
[http://dx.doi.org/10.1016/j.healthpol.2009.12.001] [PMID: 20036435]
[7]
Xu, K.; Coté, T.R. Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief. Bioinform., 2011, 12(4), 341-345.
[http://dx.doi.org/10.1093/bib/bbr006] [PMID: 21357612]
[8]
Filella, M. How reliable are environmental data on ‘orphan’ elements? The case of bismuth concentrations in surface waters. J. Environ. Monit., 2010, 12(1), 90-109.
[http://dx.doi.org/10.1039/B914307F] [PMID: 20082003]
[9]
Goldberg, R.N.; Schliesser, J.; Mittal, A.; Decker, S.R.; Santos, A.F.L.O.M.; Freitas, V.L.S.; Urbas, A.; Lang, B.E.; Heiss, C.; Ribeiro da Silva, M.D.M.C.; Woodfield, B.F.; Katahira, R.; Wang, W.; Johnson, D.K. A thermodynamic investigation of the cellulose allomorphs: Cellulose (am), cellulose Iβ(cr),cellulose II(cr), and cellulose III(cr). J. Chem. Thermodyn., 2015, 81, 184-226.
[http://dx.doi.org/10.1016/j.jct.2014.09.006]
[10]
Perks, H.M.; Liebman, J.F. Estimation of the enthalpies of formation of some common, solid-phase compounds of considerable theoretical importance. Struct. Chem., 2000, 11, 325-329.
[http://dx.doi.org/10.1023/A:1009242427659]
[11]
Brancone, L.M.; Fulmore, W. Determination of nitrogen in difficultly combustible ring compounds. Anal. Chem., 1949, 21(9), 1147.
[http://dx.doi.org/10.1021/ac60033a040]
[12]
Knyazev, A.V.; Emel’yanenko, V.N.; Shipilova, A.S.; Lelet, M.I.; Gusarova, E.V.; Knyazeva, S.S.; Verevkin, S.P. Thermodynamic properties of vitamin B9. J. Chem. Thermodyn., 2016, 100, 185-190.
[http://dx.doi.org/10.1016/j.jct.2016.05.001]
[13]
Knyazev, A.V.; Letyanina, I.A.; Plesovskikh, A.S.; Smirnova, N.N.; Knyazeva, S.S. Thermodynamic properties of vitamin B2. Thermochim. Acta, 2014, 575, 12-16.
[http://dx.doi.org/10.1016/j.tca.2013.09.032]
[14]
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data, 2008, 37(4), 1855-1996.
[http://dx.doi.org/10.1063/1.2955570]
[15]
Verevkin, S.P.; Emel’yanenko, V.N.; Notario, R.; Roux, M.V.; Chickos, J.S.; Liebman, J.F. Rediscovering the wheel. Thermochemical analysis of energetics of the aromatic diazines. J. Phys. Chem. Lett., 2012, 3(23), 3454-3459.
[http://dx.doi.org/10.1021/jz301524c] [PMID: 26290972]
[16]
Ribeiro da Silva, M.A.V.; Matos, M.A.R.; Morais, V.M.F. Thermochemical and theoretical studies of some benzodiazines. J. Chem. Soc., Faraday Trans., 1995, 91, 1907-1910.
[http://dx.doi.org/10.1039/ft9959101907]
[17]
Sabbah, R.; Tabet, D.; Ermelinda, S.; Eusebio, M. Intramolecular bond energy in molecules of phthalazine, quinazoline, and quinoxaline. Thermochim. Acta, 1998, 315, 3-9.
[http://dx.doi.org/10.1016/S0040-6031(98)00282-2]
[18]
Lichtenstein, N.S.; Goldman, I.D. Riboflavin-methotrexate interactions. Photochemical reaction and competition for transport in the L1210 mouse leukemia cell. Biochem. Pharmacol., 1970, 19(4), 1229-1239.
[http://dx.doi.org/10.1016/0006-2952(70)90038-9] [PMID: 5535183]
[19]
Colbert, J.C.; Domalski, E.S.; Coxon, B. Enthalpies of combustion of D-ribose and 2-deoxy-D-ribose. J. Chem. Thermodyn., 1987, 19, 433-441.
[http://dx.doi.org/10.1016/0021-9614(87)90128-5]
[20]
Knyazev, A.V.; Smirnova, N.N.; Shipilova, A.S.; Larina, V.N.; Gusarova, E.V.; Knyazeva, S.S. Combustion calorimetry and low-temperature X-ray diffraction of steroid hormone - Hydrocortisone acetate Combustion calorimetry and low-temperature X-ray diffraction of steroid hormone - Hydrocortisone acetate. J. Therm. Anal. Calorim., 2016, 123(3), 2201-2206.
[http://dx.doi.org/10.1007/s10973-015-4836-1]
[21]
Knyazev, A.V.; Emel’yanenko, V.N.; Smirnova, N.N.; Stepanova, O.V.; Shipilova, A.S.; Markin, A.V.; Samosudova, Ya.S.; Gusarova, E.V.; Knyazeva, S.S.; Verevkin, S.P. Thermodynamic properties of methylprednisolone aceponate. J. Chem. Thermodyn., 2016, 103, 244-248.
[http://dx.doi.org/10.1016/j.jct.2016.08.022]
[22]
Ribeiro da Silva, M.A.V.; Santos, A.F.L.O.M.; Amaral, L.M.P.F. A calorimetric and computational study on the thermochemistry of 2-(5H)-furanone and 2-(5H)-thiophenone. J. Chem. Thermodyn., 2010, 42(4), 564-570.
[http://dx.doi.org/10.1016/j.jct.2009.11.013]
[23]
Pilcher, G.; Parchment, O.G.; Hillier, I.H.; Heatley, F.; Fletcher, D.; Ribeiro da Silva, M.A.V.; Ferrão, M.L.C.C.H.; Monte, M.J.S.; Fang, J. Thermochemical and theoretical studies on cyclohexanediones. J. Phys. Chem., 1993, 97(1), 243-247.
[http://dx.doi.org/10.1021/j100103a042]
[24]
Chan, W.R.; Hassall, C.H. 2-Acylderivatives of cyclic 1,3-diones. III. Ultraviolet and infrared absorption spectra of 2-acylcyclohexane-1,3-diones. J. Chem. Soc., 1956, 3495-3496.
[http://dx.doi.org/10.1039/jr9560003495]
[25]
Swarts, F. Etudes thermochimiques sur les combinaisons organiques fluorees. J. Chim. Phys., 1919, 17, 3-70.
[http://dx.doi.org/10.1051/jcp/1919170003]
[26]
Swientoslawski, W.; Bobinska, J. Corrections of the thermochemical data of F. Swarts. J. Chim. Phys., 1927, 24, 545-547.
[http://dx.doi.org/10.1051/jcp/1927240545]
[27]
Good, W.D.; Scott, D.W.; Waddington, G. Combustion calorimetry of organic fluorine compounds by a rotating bomb. J. Phys. Chem., 1956, 60(8), 1080-1089.
[http://dx.doi.org/10.1021/j150542a014]
[28]
Matos, M.A.R.; Miranda, M.S.; Morais, V.M.F.; Liebman, J.F. Thermochemistry of (E)- and (Z)-disubstituted alkene species: a combined experimental and theoretical investigation of isomeric dimethyl fumarate and dimethyl maleate. Org. Biomol. Chem., 2003, 1(16), 2930-2934.
[http://dx.doi.org/10.1039/b303276k] [PMID: 12968344]
[29]
Polekhina, G.; Board, P.G.; Blackburn, A.C.; Parker, M.W. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry, 2001, 40(6), 1567-1576.
[http://dx.doi.org/10.1021/bi002249z] [PMID: 11327815]
[30]
Umnahanant, P.; Chickos, J.S. Thermochemistry of ethyl 3-oxobutanoate revisited: Observance of a non-zero enthalpy of mixing between tautomers and its effects on enthalpies of formation. J. Chem. Eng. Data, 2005, 50(5), 1720-1726.
[http://dx.doi.org/10.1021/je050179z]
[31]
An, X.; Zhang, Z.; Wang, S.; Yan, J.; Hu, R.; Hu, J. Study on bond energies: the heat of combustion of hippuric acid, piperazine, and azacycloheptane. Huaxue Xuebao, 1981, 39, 485-492.
[32]
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K. Thermodynamic properties and ideal-gas enthalpies of formation for dicyclohexyl sulfide, diethylenetriamine, di-n-octyl sulfide, dimethyl carbonate, piperazine, hexachloroprop-1-ene, tetrakis(dimethylaminoethylene, N,N′-bis-(2-hydroxyethylethylenediamine, and 1,2,4-triazolo[1,5-a]pyrimidine. J. Chem. Eng. Data, 1997, 42(6), 1037-1052.
[http://dx.doi.org/10.1021/je9700986]
[33]
Verevkin, S.P. Thermochemistry of amines: Strain in six-membered rings from experimental standard molar enthalpies of formation of morpholines and piperazines. J. Chem. Thermodyn., 1998, 30(9), 1069-1079.
[http://dx.doi.org/10.1006/jcht.1998.0371]
[34]
Almeida, A.R.R.P.; Matos, M.A.R.; Monte, M.J.S.; Morais, V.M.F. Experimental and computational thermodynamic study of ortho-, meta-, and para-methylbenzamide. J. Chem. Thermodyn., 2012, 47, 81-89.
[http://dx.doi.org/10.1016/j.jct.2011.09.024]
[35]
Emel’yanenko, V.N.; Zaitseva, K.V.; Nagrimanov, R.N.; Solomonov, B.N.; Verevkin, S.P. Benchmark thermodynamic properties of methyl- and methoxybenzamides: Comprehensive experimental and theoretical study. J. Phys. Chem. A, 2016, 120(42), 8419-8429.
[http://dx.doi.org/10.1021/acs.jpca.6b08027] [PMID: 27700090]
[36]
Sabbah, R.; Perez, L. Energetics of inter- and intramolecular bonds in three benzenediamine isomers. Can. J. Chem., 1997, 75, 357-364.
[http://dx.doi.org/10.1139/v97-041]
[37]
Santos, A.F.L.O.M.; Ribeiro da Silva, M.A.V. Diaminobenzenes: an experimental and computational study. J. Phys. Chem. B, 2011, 115(17), 4939-4948.
[http://dx.doi.org/10.1021/jp200670s] [PMID: 21476524]
[38]
Metzger, R.M.; Arafat, E.S. Enthalpies of formation of naphthalene TCNQ, anthracene TCNQ, TMPD, and TMPD TCNQ, and experimental crystal binding energies of mixed simple regular lattices. J. Chem. Phys., 1983, 78, 2696-2705.
[http://dx.doi.org/10.1063/1.445029]
[39]
Lei, K-l.; Li, H-r.; Liu, Y.; Qu, S-s. Determination of standard enthalpy of formation of 2-aminopyrimidine. Wuhan Daxue Xuebao. Lixueban, 2004, 50, 424-426.
[40]
Ribeiro da Silva, M.A.V.; Galvão, T.L.P.; Rocha, I.M.; Santos, A.F.L.O.M. Aromaticity and stability going in opposite directions: An energetic, structural, magnetic and electronic study of aminopyrimidines. J. Chem. Thermodyn., 2012, 54, 330-338.
[http://dx.doi.org/10.1016/j.jct.2012.05.015]
[41]
Ribeiro da Silva, M.A.V.; Morais, V.M.F.; Matos, M.A.R.; Rio, C.M.A. Thermochemical and theoretical studies of some bipyridines. J. Org. Chem., 1995, 60(16), 5291-5294.
[http://dx.doi.org/10.1021/jo00121a056]
[42]
Guthrie, J.P.; Stein, A.R.; Huntington, A.P. Thermodynamics of methanesulfonic acid, methanesulfonyl chloride, and methyl methanesulfonate. Can. J. Chem., 1998, 76(6), 929-936.
[http://dx.doi.org/10.1139/v98-084]
[43]
Guthrie, J.P.; Gallant, R.T. Thermodynamics of methanesulfonic acid revisited. Can. J. Chem., 2000, 78(10), 1295-1298.
[http://dx.doi.org/10.1139/v00-134]
[44]
Liebman, J.F. Thermochemistry of sulphonic acids and their derivatives in: The chemistry of the sulphonic acids, esters and their derivatives; Patai, S; Rappaport, Z., Ed.; Wiley: Chichester, 1991, pp. 283-321.
[http://dx.doi.org/10.1002/0470034394]
[45]
Boerio-Goates, J.; Francis, M.R.; Goldberg, R.N. Ribeiro da Silva. M. A. V.; Ribeiro da Silva, M. D. M. C.; Tewari, Y. N. Thermochemistry of adenosine. J. Chem. Thermodyn., 2001, 33(8), 929-947.
[http://dx.doi.org/10.1006/jcht.2001.0820]
[46]
Ur’yash, V.F.; Larina, V.N.; Kokurina, N.Yu.; Bakulin, A.V.; Kashtanov, E.A.; Varlamov, V.P. Dependence of the ordering degree and thermochemical characteristics of chitin and chitosan on their biological origin. Russ. J. Phys. Chem. A, 2012, 86(1), 1-8.
[http://dx.doi.org/10.1134/S0036024412010293]
[47]
Kashtanov, E.A.; Uryash, V.F.; Kokurina, N.Yu.; Larina, V.N. Effect of hydrolysis on heat capacity, thermodynamic functions, and the relaxation transition of crab chitin and chitosan. Russ. J. Phys. Chem. A, 2014, 88(2), 221-229.
[http://dx.doi.org/10.1134/S0036024414020113]
[48]
Hamre, A.G.; Jana, S.; Holen, M.M.; Mathiesen, G.; Väljamäe, P.; Payne, C.M.; Sørlie, M. Thermodynamic relationships with processivity in Serratia marcescens family 18 chitinases. J. Phys. Chem. B, 2015, 119(30), 9601-9613.
[http://dx.doi.org/10.1021/acs.jpcb.5b03817] [PMID: 26154587]
[49]
Doering, W.v.E.; Kitagawa, T. Thermal cis-trans rearrangement of semirigid polyenes as a model for the anticarcinogen β-carotene: An all-trans-pentaene and an all-trans-heptaene. J. Am. Chem. Soc., 1991, 113(11), 4288-4297.
[http://dx.doi.org/10.1021/ja00011a036]
[50]
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H-W.; Boese, R. Resonance energy calculation; the MM2ERW force field. Chem. Ber., 1991, 124, 2499-2521.
[http://dx.doi.org/10.1002/cber.19911241121]
[51]
Kiyobayashi, T.; Sakiyama, M. Sorai M and, M.; Mitchell, R.H. Combustion calorimetry of dimethyldihydropyrene. A carbon-bridged[14]annulene. J. Org. Chem., 1997, 62(21), 7469-7470.
[http://dx.doi.org/10.1021/jo970499o] [PMID: 11671866]
[52]
Inoue, Y.; Liu, Y.; Tong, L.; Ouchi, M.; Hakushi, T. Molecular design of crown ethers. Part 11. Complexation thermodynamics of crown ethers. 3. 12-Crown-4 to 36-crown-12: from rigid to flexible ligand. J. Chem. Soc., Perkin Trans. 2, 1993, 1947-1950.
[http://dx.doi.org/10.1039/p29930001947]
[53]
Santos, A.F.L.O.M.; Amaral, L.M.P.F.; Ribeiro da Silva, M.D.M.C.; Roux, M.V.; Notario, R. Experimental and computational study on the energetics of the cyclic anhydrides of glycine and alanine. J. Chem. Thermodyn., 2013, 58, 29-35.
[http://dx.doi.org/10.1016/j.jct.2012.10.012]
[54]
Amaral, L.M.P.F.; Santos, A.F.L.O.M.; Ribeiro da Silva, M.D.M.C.; Roux, M.V.; Notario, R. Thermochemistry of sarcosine and sarcosine anhydride: Theoretical and experimental studies. J. Chem. Thermodyn., 2013, 58, 315-321.
[http://dx.doi.org/10.1016/j.jct.2012.11.019]
[55]
Fischer, E.; Wrede, F. Heats of combustion of some organic compounds; Situngsber Preuss Akad. Wiss. KL, 1904, pp. 687-715.
[56]
Breitenbach, J.W.; Derkosch, J.; Wessely, F. Energetics of peptide formation. Nature, 1952, 169(4309), 922.
[http://dx.doi.org/10.1038/169922a0] [PMID: 14941086]
[57]
Colbert, J.C.; Domalski, E.S.; Coxon, B.; Vanderhart, D.L. Bomb calorimetric and NMR studies on crystalline hexaglycine. Thermochim. Acta, 1989, 153, 123-141.
[http://dx.doi.org/10.1016/0040-6031(89)85428-0]
[58]
Diaz, E.L.; Domalski, E.S.; Colbert, J.C. Enthalpies of combustion of glycylglycne and DL-alanyl-DL-alanine. J. Chem. Thermodyn., 1992, 24, 1311-1318.
[http://dx.doi.org/10.1016/S0021-9614(05)80272-1]
[59]
Seebach, D.; Bossler, H.G.; Flowers, R.T.; Arnett, E.M. Calorimetric measurements of the complexation of cyclosporin A, ascomycin, fujimycin, and rapamycin with lithium chloride and with an immunophilin. Helv. Chim. Acta, 1994, 77, 291-305.
[http://dx.doi.org/10.1002/hlca.19940770129]
[60]
Charlton, A.; Macnab, J.I. Measurement and prediction of enthalpies of combustion and formation of oxygen and nitrogen heterocycles. Thermochim. Acta, 2000, 344(1-2), 15-21.
[http://dx.doi.org/10.1016/S0040-6031(99)00324-X]
[61]
Roux, M.V.; Jiménez, P.; Martín-Luengo, M.Á. M.Á.; Dávalos, J.Z.; Sun, Z.; Hosmane, R.S.; Liebman, J.F. M.Á.; Dávalos, J.Z.; Sun, Z.; Hosmane, R.S.; Liebman, J.F. The elusive antiaromaticity of maleimides and maleic anhydride: Enthalpies of formation of N-methylmaleimide, N-methylsuccinimide, N-methylphthalimide, and N-benzoyl-N-methylbenzamide. J. Org. Chem., 1997, 62(9), 2732-2737.
[http://dx.doi.org/10.1021/jo9621985] [PMID: 11671632]
[62]
Ribeiro da Silva, M.A.V.; Santos, C.P.F.; Monte, M.J.S.; Sousa, C.A.D. Thermochemical studies of phthalimide and two N-alkylsubstituted phthalimides (alkyl = ethyl and n-propyl). J. Therm. Anal. Calorim., 2006, 83(3), 533-539.
[http://dx.doi.org/10.1007/s10973-005-7448-3]
[63]
Yang, M.Y.; Pilcher, G. Enthalpies of combustion of succinic anhydride, glutaric anhydride, and glutarimide. J. Chem. Thermodyn., 1990, 22(9), 893-898.
[http://dx.doi.org/10.1016/0021-9614(90)90177-R]
[64]
Matos, M.A.R.; Miranda, M.S.; Fonseca, D.A.P.; Morais, V.M.F.; Liebman, J.F. Calorimetric and computational thermochemical study of 3,3-tetramethyleneglutaric acid, 3,3-tetramethyleneglutaric anhydride, and 3,3-tetramethyleneglutarimide. J. Phys. Chem. A, 2008, 112(40), 10053-10058.
[http://dx.doi.org/10.1021/jp805292x] [PMID: 18774787]
[65]
Lara-Ochoa, F.; Pérez, G. Espinosa; Mijangos-Santiago, F. Calorimetric determinations and theoretical calculations of polymorphs of thalidomide. J. Mol. Struct., 2007, 840(1-3), 97-106.
[http://dx.doi.org/10.1016/j.molstruc.2006.11.039]
[66]
Reepmeyer, J.C.; Rhodes, M.O.; Cox, D.C.; Silverton, J.V. Characterization and crystal structure of two polymorphic forms of racemic thalidomide. J. Chem. Soc., Perkin Trans. 2, 1994, 2063-2067.
[http://dx.doi.org/10.1039/p29940002063]
[67]
Robb, R.A.; Zimmer, M.P. Solubility and heat of solution of carbon dioxide in aqueous solutions of arsenious oxide, arsenic pentoxide, and hydrochloric acid. Standard state correction for the combustion of organochlorine compounds. J. Chem. Eng. Data, 1968, 13, 200-203.
[http://dx.doi.org/10.1021/je60037a017]
[68]
Stridh, G. Slow oxidation of arsenic(III) oxide to arsenic(V) oxide in aqueous solution by elemental oxygen and its effect on the precise determination of energies of combustion of organic chloro and bromo compounds. J. Chem. Thermodyn., 1975, 7, 703-705.
[http://dx.doi.org/10.1016/0021-9614(75)90011-7]
[69]
Ribeiro da Silva, M.A.V.; Ferreira, A.I.M.C. Lobo; Lima, L. M. S. S.; Sousa, S. M. M., Thermochemistry of phenyl-acetic and monochlorophenylacetic acids. J. Chem. Thermodyn., 2008, 40(2), 137-145.
[http://dx.doi.org/10.1016/j.jct.2007.07.010]
[70]
Domalski, E.S. Selected values of heats of combustion and heats of formation of organic compounds containing the elements carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur. J. Phys. Chem. Ref. Data, 1972, 1(2), 221-277.
[http://dx.doi.org/10.1063/1.3253099]
[71]
Roux, M.V.; Temprado, M.; Notario, R.; Verevkin, S.P.; Emel’yanenko, V.N.; Demasters, D.E.; Liebman, J.F. The energetics of naphthalene derivatives, III: Phenylacetic acid and the isomeric 1- and 2-naphthylacetic acids. Mol. Phys., 2004, 102(18), 1909-1917.
[http://dx.doi.org/10.1080/00268970412331284262]
[72]
Skoulika, S.; Sabbah, R. Enthalpy of formation of some ω-amino acids in the solid state. Compt. Rendu, Ser. 2, 1982, 295, 657-660.
[73]
Skoulika, S.; Sabbah, R. Thermodynamics of nitrogen compounds. X. Thermochemical study of some ω-amino acids. Thermochim. Acta, 1983, 61, 203-214.
[http://dx.doi.org/10.1016/0040-6031(83)80316-5]
[74]
Contineanu, I.; Marchidan, D.I. The enthalpies of combustion and formation of some isomers of aminobutyric (aminobutanoic) acid. Rev. Roum. Chim., 1994, 39, 1391-1395.
[75]
Boerio-Goates, J.; Artman, J.I.; Gold, D. Calorimetric studies of organic solid-state reactions. The conversion of methyl p-dimethylaminobenzenesulfonate to p-(trimethylammonium)benzenesulfonate. J. Phys. Chem. Solids, 1987, 48(12), 1185-1189.
[http://dx.doi.org/10.1016/0022-3697(87)90004-7]
[76]
Adams, C.S. Process for making the methyl ester of mdimethylaminobenzoic acid. U.S. Patent 2,415,230, Feb 4, 1947.
[77]
William Shakespeare. Hamlet (1.5.167-8), Hamlet to Horatio.
[78]
Tulp, M.; Bohlin, L. Unconventional natural sources for future drug discovery. Drug Discov. Today, 2004, 9(10), 450-458.
[http://dx.doi.org/10.1016/S1359-6446(04)03066-1] [PMID: 15109950]
[79]
Tulp, M.; Bohlin, L. Rediscovery of known natural compounds: nuisance or goldmine? Bioorg. Med. Chem., 2005, 13(17), 5274-5282.
[http://dx.doi.org/10.1016/j.bmc.2005.05.067] [PMID: 16019216]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy