[1]
Villa-Bellosta R, Egido J. Phosphate, pyrophosphate, and vascular calcification: A question of balance. Eur Heart J 2017; 38: 1801-4.
[2]
Blumenthal HT, Lansing AI, Wheeler PA. Calcification of the media of the human aorta and its relation to intimal arteriosclerosis, ageing and disease. Am J Pathol 1944; 20: 665-87.
[3]
Nicoll R, Henein MY. The predictive value of arterial and valvular calcification for mortality and cardiovascular events. Int J Cardiol Heart Vessels 2014; 3: 1-5.
[4]
Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease JRSM Cardiovasc Dis 2012; 1(4) pii: cvd.2012.012016
[5]
Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 2011; 109: 697-711.
[6]
Villa-Bellosta R. Synthesis of extracellular pyrophosphate increases in vascular smooth muscle cells during phosphate-induced calcification. Arterioscler Thromb Vasc Biol 2018; 38: 2137-47.
[7]
Farzaneh-Far A, Proudfoot D, Shanahan C, Weissberg PL. Vascular and valvar calcification: Recent advances. Heart Br Card Soc 2001; 85: 13-7.
[8]
Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: Prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv 2014; 83: E212-20.
[9]
Desai MY, Cremer PC, Schoenhagen P. Thoracic aortic calcification: Diagnostic, prognostic, and management considerations. JACC Cardiovasc Imaging 2018; 11: 1012-26.
[10]
Andrews J, Psaltis PJ, Bartolo BAD, Nicholls SJ, Puri R. Coronary arterial calcification: A review of mechanisms, promoters and imaging. Trends Cardiovasc Med 2018; 28: 491-501.
[11]
Shekar C, Budoff M. Calcification of the heart: Mechanisms and therapeutic avenues. Expert Rev Cardiovasc Ther 2018; 16: 527-36.
[12]
Myasoedova VA, Ravani AL, Frigerio B, et al. Novel pharmacological targets for calcific aortic valve disease: Prevention and treatments. Pharmacol Res 2018; 136: 74-82.
[13]
Proudfoot D, Shanahan CM. Biology of calcification in vascular cells: Intima versus media. Herz 2001; 26: 245-51.
[14]
Panh L, Lairez O, Ruidavets JB, Galinier M, Carrié D, Ferrières J. Coronary artery calcification: From crystal to plaque rupture. Arch Cardiovasc Dis 2017; 110: 550-61.
[15]
Ho CY, Shanahan CM. Medial arterial calcification: An overlooked player in peripheral arterial disease. Arterioscler Thromb Vasc Biol 2016; 36: 1475-82.
[16]
Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med 2006; 260: 192-210.
[17]
Schibler D, Russell RG, Fleisch H. Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats. Clin Sci 1968; 35: 363-72.
[18]
Lee SY, Müller CE. Nucleotide pyrophosphatase/phosphodieste-rase 1 (NPP1) and its inhibitors. MedChemComm 2017; 8: 823-40.
[19]
Perrakis A, Moolenaar WH. Autotaxin: Structure-function and signaling. J Lipid Res 2014; 55: 1010-8.
[20]
Bobryshev YV, Orekhov AN, Sobenin I, Chistiakov DA. Role of bone-type tissue-nonspecific alkaline phosphatase and PHOSPO1 in vascular calcification. Curr Pharm Des 2014; 20: 5821-8.
[21]
Villa-Bellosta R, Wang X, Millán JL, Dubyak GR, O’Neill WC. Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2011; 301: H61-8.
[22]
Rutsch F, Vaingankar S, Johnson K, et al. PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol 2001; 158: 543-54.
[23]
Lomashvili KA, Garg P, Narisawa S, Millan JL, O’Neill WC. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: Potential mechanism for uremic vascular calcification. Kidney Int 2008; 73: 1024-30.
[24]
Millán JL. Alkaline Phosphatases : Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2006; 2: 335-41.
[25]
Sharma U, Pal D, Prasad R. Alkaline phosphatase: An overview. Indian J Clin Biochem IJCB 2014; 29: 269-78.
[26]
Robison R. The possible significance of hexosephosphoric esters in ossification. Biochem J 1923; 17: 286-93.
[27]
Manes T, Glade K, Ziomek CA, Millán JL. Genomic structure and comparison of mouse tissue-specific alkaline phosphatase genes. Genomics 1990; 8: 541-54.
[28]
Harrison G, Shapiro IM, Golub EE. The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro. J Bone Miner Res 1995; 10: 568-73.
[29]
Yamasaki K, Hagiwara H. Excess iron inhibits osteoblast metabolism. Toxicol Lett 2009; 191: 211-5.
[30]
Villa-Bellosta R. Impact of magnesium:calcium ratio on calcification of the aortic wall. PLoS One 2017; 12: e0178872.
[31]
Buchet R, Millán JL, Magne D. Multisystemic functions of alkaline phosphatases. Methods Mol Biol Clifton NJ 2013; 1053: 27-51.
[32]
Holtz KM, Kantrowitz ER. The mechanism of the alkaline phosphatase reaction: Insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett 1999; 462: 7-11.
[33]
Conti F, Ciullini L, Pugliese G. Hypophosphatasia: Clinical manifestation and burden of disease in adult patients. Clin Cases Miner Bone Metab 2017; 14: 230-4.
[34]
Simon S, Resch H, Klaushofer K, Roschger P, Zwerina J, Kocijan R. Hypophosphatasia: From diagnosis to treatment. Curr Rheumatol Rep 2018; 20: 69.
[35]
Millán JL, Whyte MP. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 2016; 98: 398-416.
[36]
Whyte MP, Greenberg CR, Salman NJ, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 2012; 366: 904-13.
[37]
Bowden SA, Foster BL. Profile of asfotase alfa in the treatment of hypophosphatasia: Design, development, and place in therapy. Drug Des Devel Ther 2018; 12: 3147-61.
[38]
Rathan S, Yoganathan AP, O’Neill CW. The role of inorganic pyrophosphate in aortic valve calcification. J Heart Valve Dis 2014; 23: 387-94.
[39]
Villa-Bellosta R, O’Neill WC. Pyrophosphate deficiency in vascular calcification. Kidney Int 2018; 93: 1293-7.
[40]
Lomashvili KA, Narisawa S, Millán JL, O’Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int 2014; 85: 1351-6.
[41]
Lomashvili KA, Khawandi W, O’Neill WC. Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol 2005; 16: 2495-500.
[42]
Villa-Bellosta R, González-Parra E, Egido J. Alkalosis and dialytic clearance of phosphate increases phosphatase activity: A hidden consequence of hemodialysis. PLoS One 2016; 11: e0159858.
[43]
Villa-Bellosta R, Rivera-Torres J, Osorio FG, et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 2013; 127: 2442-51.
[44]
Riser BL, Barreto FC, Rezg R, et al. Daily peritoneal administration of sodium pyrophosphate in a dialysis solution prevents the development of vascular calcification in a mouse model of uraemia. Nephrol Dial Transplant 2011; 26: 3349-57.
[45]
O’Neill WC, Lomashvili KA, Malluche HH, Faugere MC, Riser BL. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 2011; 79: 512-7.
[46]
Lomashvili KA, Cobbs S, Hennigar RA, Hardcastle KI, O’Neill WC. Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J Am Soc Nephrol 2004; 15: 1392-401.
[47]
Azpiazu D, González-Parra E, Egido J, Villa-Bellosta R. Hydrolysis of Extracellular Pyrophosphate increases in post-hemodialysis plasma. Sci Rep 2018; 8: 11089.
[48]
Narisawa S, Yadav MC, Millán JL. In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin. J Bone Miner Res 2013; 28: 1587-98.
[49]
Narisawa S, Harmey D, Yadav MC, O’Neill WC, Hoylaerts MF, Millán JL. Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 2007; 22: 1700-10.
[50]
Kiffer-Moreira T, Yadav MC, Zhu D, et al. Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification. J Bone Miner Res 2013; 28: 81-91.
[51]
Yadav MC, Simão AMS, Narisawa S, et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: A unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res 2011; 26: 286-97.
[52]
Fakhry M, Roszkowska M, Briolay A, et al. TNAP stimulates vascular smooth muscle cell trans-differentiation into chondrocytes through calcium deposition and BMP-2 activation: Possible implication in atherosclerotic plaque stability. Biochim Biophys Acta 2017; 1863: 643-53.
[53]
Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol 2017; 13: 429-42.
[54]
al-Rashida M, Iqbal J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 2014; 34(4): 703-43.
[55]
Hsu HH, Anderson HC. The isolation and partial sequencing of human bone alkaline phosphatase gene. Int J Biochem 1989; 21(8): 847-51.