Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies

Author(s): Elham Hoveizi*, Shima Tavakol, Sadegh Shirian and Khadije Sanamiri

Volume 14, Issue 2, 2019

Page: [152 - 168] Pages: 17

DOI: 10.2174/1574888X13666181018150107

Price: $65

Abstract

Diabetes mellitus is an autoimmune disease which causes loss of insulin secretion producing hyperglycemia by promoting progressive destruction of pancreatic β cells. An ideal therapeutic approach to manage diabetes mellitus is pancreatic β cells replacement. The aim of this review article was to evaluate the role of nanofibrous scaffolds and stem cells in the treatment of diabetes mellitus. Various studies have pointed out that application of electrospun biomaterials has considerably attracted researchers in the field of tissue engineering. The principles of cell therapy for diabetes have been reviewed in the first part of this article, while the usability of tissue engineering as a new therapeutic approach is discussed in the second part.

Keywords: Cell therapy, diabetes, electrospun nanofiber, scaffold, tissue engineering, diabetes mellitus.

[1]
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87(1): 4-14.
[2]
Gan MJ, Albanese-O’Neill A, Haller MJ. Type 1 diabetes: Current concepts in epidemiology, pathophysiology, clinical care, and research. Curr Probl Pediatr Adolesc Health Care 2012; 42(10): 269-91.
[3]
Shapiro AJ, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4): 230-8.
[4]
Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54(7): 2060-9.
[5]
McCall M, Shapiro AJ. Update on islet transplantation. Cold Spring Harb Perspect Med 2012; 2(7): a007823.
[6]
Jamiolkowski RM, Guo LY, Li YR, Shaffer SM, Naji A. Islet transplantation in type I diabetes mellitus. Yale J Biol Med 2012; 85(1): 37.
[7]
Ledford H. Stem-cell success poses immunity challenge for diabetes. Nature 2014; 514(7522): 281.
[8]
Fryer BH, Rezania A, Zimmerman MC. Generating β-cells in vitro: Progress towards a Holy Grail. Curr Opin Endocrinol Diabetes Obes 2013; 20(2): 112-7.
[9]
Godfrey K, Mathew B, Bulman J, Shah O, Clement S, Gallicano G. Stem cell‐based treatments for type 1 diabetes mellitus: Bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 2012; 29(1): 14-23.
[10]
Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol 2013; 9(10): 598-606.
[11]
Noguchi H. Recent advances in stem cell research for the treatment of diabetes. World J Stem Cells 2009; 1(1): 36.
[12]
Brafman D, Phung C, Kumar N, Willert K. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 2013; 20(3): 369-81.
[13]
Shiraki N, Yoshida T, Araki K, et al. Guided differentiation of embryonic stem cells into Pdx1‐expressing regional‐specific definitive endoderm. Stem Cells 2008; 26(4): 874-85.
[14]
Kopper O, Benvenisty N. Stepwise differentiation of human embryonic stem cells into early endoderm derivatives and their molecular characterization. Stem Cell Res 2012; 8(3): 335-45.
[15]
Jiang W, Wang J, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. Cell Res 2013; 23(1): 122-30.
[16]
Soria B, Roche E, Berna G, León-Quinto T, Reig JA, Martín F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000; 49(2): 157-62.
[17]
Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292(5520): 1389-94.
[18]
Blyszczuk P, Czyz J, Kania G, et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003; 100(3): 998-1003.
[19]
Leon-Quinto T, Jones J, Skoudy A, Burcin M, Soria B. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 2004; 47(8): 1442-51.
[20]
Segev H, Fishman B, Ziskind A, Shulman M, Itskovitz‐Eldor J. Differentiation of human embryonic stem cells into insulin‐producing clusters. Stem Cells 2004; 22(3): 265-74.
[21]
Shi Y, Hou L, Tang F, et al. Inducing embryonic stem cells to differentiate into pancreatic β cells by a novel three‐step approach with activin A and all‐trans retinoic acid. Stem Cells 2005; 23(5): 656-62.
[22]
Brolen GK, Heins N, Edsbagge J, Semb H. Signals from the embryonic mouse pancreas induce differentiation of human embryonic stem cells into insulin-producing β-cell–like cells. Diabetes 2005; 54(10): 2867-74.
[23]
D’Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24(11): 1392.
[24]
Vaca P, Martin F, Vegara‐Meseguer JM, Rovira JM, Berna G, Soria B. Induction of differentiation of embryonic stem cells into insulin‐secreting cells by fetal soluble factors. Stem Cells 2006; 24(2): 258-65.
[25]
Treff NR, Vincent RK, Budde ML, et al. Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells 2006; 24(11): 2529-37.
[26]
Baetge E. Production of β‐cells from human embryonic stem cells. Diabetes Obes Metab 2008; 10(s4): 186-94.
[27]
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26(4): 443.
[28]
Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci 2009; 106(37): 15768-73.
[29]
Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009; 19(4): 429-38.
[30]
Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells Gastroenterology 2010; 138(7): 2233-45 e14
[31]
Raikwar SP, Zavazava N. PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplant Res 2012; 1(1): 19.
[32]
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro. Cell 2014; 159(2): 428-39.
[33]
Hoveizi E, Nabiuni M, Parivar K, Ai J, Massumi M. Definitive endoderm differentiation of human‐induced pluripotent stem cells using signaling molecules and IDE1 in three‐dimensional polymer scaffold. J Biomed Mater Res A 2014; 102(11): 4027-36.
[34]
Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014; 32(11): 1121-33.
[35]
Russ HA, Parent AV, Ringler JJ, et al. Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro. The EMBO J 2015; 34(13): 1759-72.
[36]
Agulnick AD, Ambruzs DM, Moorman MA, et al. Insulin‐producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med 2015; 4(10): 1214-22.
[37]
Massumi M, Pourasgari F, Nalla A, et al. An abbreviated protocol for in vitro generation of functional human embryonic stem cell-derived beta-like cells. PLoS One 2016; 11(10): e0164457.
[38]
Yabe SG, Fukuda S, Takeda F, Nashiro K, Shimoda M, Okochi H. Efficient generation of functional pancreatic β‐cells from human induced pluripotent stem cells. J Diabetes 2017; 9(2): 168-79.
[39]
Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci 2002; 99(25): 16105-10.
[40]
Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell. Mol Cell Endocrinol 2008; 294(1-2): 1-9.
[41]
Xie D, Smyth CA, Eckstein C, et al. Cytoprotection of PEG-modified adult porcine pancreatic islets for improved xenotransplantation. Biomaterials 2005; 26(4): 403-12.
[42]
D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23(12): 1534.
[43]
Knoepfler PS. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells 2009; 27(5): 1050-6.
[44]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[45]
Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324(5928): 797-801.
[46]
Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012; 10(6): 678-84.
[47]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[48]
Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26(1): 101-6.
[49]
Terzic A, Nelson TJ, Eds. editors Regenerative medicine primer Mayo Clinic Proceedings 2013.
[50]
Chen S, Borowiak M, Fox JL, et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 2009; 5(4): 258-65.
[51]
Alipio Z, Liao W, Roemer EJ, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc Natl Acad Sci 2010; 107(30): 13426-31.
[52]
Jeon K, Lim H, Kim J-H, et al. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev 2012; 21(14): 2642-55.
[53]
Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M. Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res 2012; 8(2): 274-84.
[54]
Ohmine S, Squillace KA, Hartjes KA, et al. Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging (Albany NY) 2012; 4(1): 60.
[55]
Thatava T, Nelson TJ, Edukulla R, et al. Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 2011; 18(3): 283-93.
[56]
Jiang J, Au M, Lu K, et al. Generation of insulin‐producing islet‐like clusters from human embryonic stem cells. Stem Cells 2007; 25(8): 1940-53.
[57]
Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008; 283(46): 31601-7.
[58]
Hua H, Shang L, Martinez H, et al. iPSC-derived β cells model diabetes due to glucokinase deficiency. J Clin Invest 2013; 123(7): 3146.
[59]
Thatava T, Kudva YC, Edukulla R, et al. Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther 2013; 21(1): 228-39.
[60]
Nostro MC, Sarangi F, Ogawa S, et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 2011; 138(5): 861-71.
[61]
Hrvatin S, O’Donnell CW, Deng F, et al. Differentiated human stem cells resemble fetal, not adult, β cells. Proc Natl Acad Sci 2014; 111(8): 3038-43.
[62]
Zhu F, Zhang P, Zhang D, et al. Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 2011; 54(9): 2325.
[63]
Kim J, Breunig MJ, Escalante LE, et al. Biologic and immunomodulatory properties of mesenchymal stromal cells derived from human pancreatic islets. Cytotherapy 2012; 14(8): 925-35.
[64]
Rashtbar M, Hadjati J, Ai J, et al. Critical‐sized full‐thickness skin defect regeneration using ovine small intestinal submucosa with or without mesenchymal stem cells in rat model. J Biomed Mater Res B Appl Biomater 2018; 106(6): 2177-90.
[65]
Shirian S, Ebrahimi-Barough S, Saberi H, Norouzi-Javidan A, Mousavi SMM, Derakhshan MA, et al. Comparison of capability of human bone marrow mesenchymal stem cells and endometrial stem cells to differentiate into motor neurons on electrospun poly (ε-caprolactone) scaffold. Mol Neurobiol 2016; 53(8): 5278-87.
[66]
Ebrahimi-Barough S, Javidan AN, Saberi H, et al. Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol 2015; 52(3): 1704-13.
[67]
Tang D-Q, Cao L-Z, Burkhardt BR, Xia C-Q, Litherland SA, Atkinson MA, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 2004; 53(7): 1721-32.
[68]
Karnieli O, Izhar‐Prato Y, Bulvik S, Efrat S. Generation of insulin‐producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007; 25(11): 2837-44.
[69]
Bassi ÊJ, Moraes-Vieira PM, Moreira-Sá CS, Almeida DC, Vieira LM, Cunha CS, et al. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 2012; 61(10): 2534-45.
[70]
Li F, Wang X, Deng C, Qi H, Ren L, Zhou H. Immune modulation of co‐transplantation mesenchymal stem cells with islet on T and dendritic cells. Clin Exp Immunol 2010; 161(2): 357-63.
[71]
Gao X, Song L, Shen K, et al. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol Cell Endocrinol 2014; 388(1): 41-50.
[72]
Kono TM, Sims EK, Moss DR, et al. Human adipose‐derived stromal/stem cells protect against stz‐induced hyperglycemia: Analysis of hASC‐Derived paracrine effectors. Stem Cells 2014; 32(7): 1831-42.
[73]
Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci 2006; 103(46): 17438-43.
[74]
Chang C, Wang X, Niu D, Zhang Z, Zhao H, Gong F. Mesenchymal stem cells adopt β-cell fate upon diabetic pancreatic microenvironment. Pancreas 2009; 38(3): 275-81.
[75]
Franquesa M, Hoogduijn MJ, Bestard O, Grinyó JM. Immunomodulatory effect of mesenchymal stem cells on B cells. Front Immunol 2012; 3: 212.
[76]
Hematti P, Kim J, Stein AP, Kaufman D. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant Rev 2013; 27(1): 21-9.
[77]
Staeva TP, Chatenoud L, Insel R, Atkinson MA. Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 2013; 62(1): 9-17.
[78]
Ouyang J, Huang W, Yu W, et al. Generation of insulin-producing cells from rat mesenchymal stem cells using an aminopyrrole derivative XW4. 4. Chem Biol Interact 2014; 208: 1-7.
[79]
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13(12): 4279-95.
[80]
Kim YJ, Kim HK, Cho HH, Bae YC, Suh KT, Jung JS. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 2007; 20(6): 867-76.
[81]
Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A. Mesenchymal stem cells derived from adipose tissue vs bone marrow: In vitro comparison of their tropism towards gliomas. PLoS One 2013; 8(3): e58198.
[82]
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
[83]
Gabr MM, Sobh MM, Zakaria MM, Refaie AF, Ghoneim MA. Transplantation of insulin-producing clusters derived from adult bone marrow stem cells to treat diabetes in rats. Exp Clin Transplant 2008; 6(3): 236-43.
[84]
Zalzman M, Anker-Kitai L, Efrat S. Differentiation of human liver-derived, insulin-producing cells toward the β-cell phenotype. Diabetes 2005; 54(9): 2568-75.
[85]
Hori Y, Gu X, Xie X, Kim SK. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med 2005; 2(4): e103.
[86]
Chen L-B, Jiang X-B, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 2004; 10(20): 3016.
[87]
Wu X-H, Liu C-P, Xu K-F, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol 2007; 13(24): 3342.
[88]
Liu T, Zhang S, Chen X, Li G, Wang Y. Hepatic differentiation of mouse embryonic stem cells in three-dimensional polymer scaffolds. Tissue Eng Part A 2009; 16(4): 1115-22.
[89]
Wang G, Ao Q, Gong K, et al. The effect of topology of chitosan biomaterials on the differentiation and proliferation of neural stem cells. Acta Biomater 2010; 6(9): 3630-9.
[90]
Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly (lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A 2008; 87(1): 25-32.
[91]
Abu Bakar Sajak A, Mediani A. Maulidiani, Ismail A, Abas F. Metabolite variation in lean and obese streptozotocin (STZ)-induced diabetic rats via (1)H NMR-Based metabolomics approach. Appl Biochem Biotechnol 2017; 182(2): 653-68.
[92]
Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: Solving global issues. Mater Today 2006; 9(3): 40-50.
[93]
Tavakol S, Saber R, Hoveizi E, et al. Self-assembling peptide nanofiber containing long motif of laminin induces neural differentiation, tubulin polymerization, and neurogenesis: In vitro, ex vivo, and in vivo studies. Mol Neurobiol 2016; 53(8): 5288-99.
[94]
Tavakol S, Saber R, Hoveizi E, Aligholi H, Ai J, Rezayat SM. Chimeric self-assembling nanofiber containing bone marrow homing peptide’s motif induces motor neuron recovery in animal model of chronic spinal cord injury; an in vitro and in vivo investigation. Mol Neurobiol 2016; 53(5): 3298-308.
[95]
Tavakol S, Musavi SMM, Tavakol B, Hoveizi E, Ai J, Rezayat SM. Noggin along with a self-assembling peptide nanofiber containing long motif of laminin induces tyrosine hydroxylase gene expression. Mol Neurobiol 2017; 54(6): 4609-16.
[96]
Tavakol S, Mousavi SMM, Tavakol B, Hoveizi E, Ai J, Sorkhabadi SMR. Mechano-transduction signals derived from self-assembling peptide nanofibers containing long motif of laminin influence neurogenesis in in-vitro and in-vivo. Mol Neurobiol 2017; 54(4): 2483-96.
[97]
Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 2015; 227(6): 746-56.
[98]
Davis NE, Beenken-Rothkopf LN, Mirsoian A, Kojic N, Kaplan DL, Barron AE, et al. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials 2012; 33(28): 6691-7.
[99]
Wang J-Y, Wang K, Gu X, Luo Y. Polymerization of hydrogel network on microfiber surface: synthesis of hybrid water-absorbing matrices for biomedical applications. ACS Biomater Sci Eng 2016; 2(6): 887-92.
[100]
Bosworth LA, Turner L-A, Cartmell SH. State of the art composites comprising electrospun fibres coupled with hydrogels: A review. Nanomedicine 2013; 9(3): 322-35.
[101]
Park JH, Schwartz Z, Olivares-Navarrete R, Boyan BD, Tannenbaum R. Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes. Langmuir 2011; 27(10): 5976-85.
[102]
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014; 111(3): 441-53.
[103]
Ciardelli G, Chiono V, Vozzi G, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 2005; 6(4): 1961-76.
[104]
Roether J, Boccaccini AR, Hench L, Maquet V, Gautier S, Jérôme R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials 2002; 23(18): 3871-8.
[105]
Al-Sanea MM, Ali Khan MS, Abdelazem AZ, et al. Synthesis and In vitro Antiproliferative Activity of New 1-Phenyl-3-(4-(pyridin-3-yl)phenyl)urea Scaffold-Based Compounds. Molecules 2018; 23(2): pii E297.
[106]
Lutolf MP. Biomaterials: Spotlight on hydrogels. Nat Mater 2009; 8(6): 451-3.
[107]
Jafari M, Paknejad Z, Rad MR, et al. Polymeric scaffolds in tissue engineering: A literature review. J Biomed Mater Res B Appl Biomater 2017; 105(2): 431-59.
[108]
Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: Relevance to scaffold design and transplantation. Cell Transplant 2009; 18(1): 1-12.
[109]
Korpos É, Kadri N, Kappelhoff R, et al. The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 2013; 62(2): 531-42.
[110]
Nadri S, Barati G, Mostafavi H, Esmaeilzadeh A, Enderami SE. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artif Cells Nanomed Biotechnol 2017; 1-10.
[111]
Calafiore R, Basta G, Luca G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes. Diabetes Care 2006; 29(1): 137-8.
[112]
Tuch BE, Keogh GW, Williams LJ, et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 2009; 32(10): 1887-9.
[113]
Krishnan R, Alexander M, Robles L, Foster CE 3rd, Lakey JR. Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud 2014; 11(1): 84-101.
[114]
Zhu H, Li W, Liu Z, et al. Selection of Implantation Sites for Transplantation of Encapsulated Pancreatic Islets. Tissue Eng Part B Rev 2018. [Epub ahead of print].
[115]
Glage S, Klinge PM, Miller MC, et al. Therapeutic concentrations of glucagon-like peptide-1 in cerebrospinal fluid following cell-based delivery into the cerebral ventricles of cats. Fluids Barriers CNS 2011; 8: 18.
[116]
Lin C-C, Raza A, Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 2011; 32(36): 9685-95.
[117]
Zimmermann H, Zimmermann D, Reuss R, et al. Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 2005; 16(6): 491-501.
[118]
Orive G, Carcaboso A, Hernandez R, Gascon A, Pedraz J. Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 2005; 6(2): 927-31.
[119]
Strand BL, Coron AE, Skjak-Braek G. Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl Med 2017; 6(4): 1053-8.
[120]
Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[121]
Hill RS, Cruise GM, Hager SR, et al. Immunoisolation of adult porcine islets for the treatment of diabetes mellitus. Ann N Y Acad Sci 1997; 831(1): 332-43.
[122]
Teramura Y, Kaneda Y, Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly (vinyl alcohol) anchored to poly (ethylene glycol)–lipids in the cell membrane. Biomaterials 2007; 28(32): 4818-25.
[123]
Wilson JT, Cui W, Chaikof EL. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett 2008; 8(7): 1940-8.
[124]
Lee SH, Kim KR, Ryu SY, et al. Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(17): 5953-63.
[125]
Moshaverinia A, Chen C, Akiyama K, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. J Mater Sci Mater Med 2012; 23(12): 3041-51.
[126]
Man Y, Wang P, Guo Y, et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials 2012; 33(34): 8802-11.
[127]
Hall KK, Gattás-Asfura KM, Stabler CL. Microencapsulation of islets within alginate/poly (ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomater 2011; 7(2): 614-24.
[128]
Cui Y-X, Shakesheff KM, Adams G. Encapsulation of RIN-m5F cells within Ba2+ cross-linked alginate beads affect proliferation and insulin secretion. J Microencapsul 2006; 23(6): 663-76.
[129]
Brendel MD, Kong SS, Alejandro R, Mintz DH. Improved functional survival of human islets of Langerhans in three-dimensional matrix culture. Cell Transplant 1994; 3(5): 427-35.
[130]
Kaufman-Francis K, Koffler J, Weinberg N, Dor Y, Levenberg S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PLoS One 2012; 7(7): e40741.
[131]
Hou Y, Song C, Xie WJ, et al. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 2009; 86(1): 11-5.
[132]
Ellis C, Suuronen E, Yeung T, Seeberger K, Korbutt G. Bioengineering a highly vascularized matrix for the ectopic transplantation of islets. Islets 2013; 5(5): 216-25.
[133]
Teramura Y, Iwata H. Surface modification of islets with PEG-lipid for improvement of graft survival in intraportal transplantation. Transplantation 2009; 88(5): 624-30.
[134]
Daoud JT, Petropavlovskaia MS, Patapas JM, et al. Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 2011; 32(6): 1536-42.
[135]
Kawazoe N, Lin X, Tateishi T, Chen G. Three-dimensional cultures of rat pancreatic RIN-5F cells in porous PLGA-collagen hybrid scaffolds. J Bioact Compat Polym 2009; 24(1): 25-42.
[136]
Mason MN, Arnold CA, Mahoney MJ. Entrapped collagen type 1 promotes differentiation of embryonic pancreatic precursor cells into glucose-responsive β-cells when cultured in three-dimensional peg hydrogels. Tissue Eng Part A 2009; 15(12): 3799-808.
[137]
Wang N, Adams G, Buttery L, Falcone FH, Stolnik S. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J Biotechnol 2009; 144(4): 304-12.
[138]
Chayosumrit M, Tuch B, Sidhu K. Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials 2010; 31(3): 505-14.
[139]
Pham-Hua D, Padgett LE, Xue B, et al. Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials 2017; 128: 19-32.
[140]
Montanari E, Meier RPH, Mahou R, et al. Multipotent mesenchymal stromal cells enhance insulin secretion from human islets via N-cadherin interaction and prolong function of transplanted encapsulated islets in mice. Stem Cell Res Ther 2017; 8(1): 199.
[141]
Chang R, Faleo G, Russ HA, Parent AV, Elledge SK, Bernards DA, et al. Nanoporous immunoprotective device for stem-cell-derived beta-cell replacement therapy. ACS Nano 2017; 11(8): 7747-57.
[142]
Kizilel S, Scavone A, Liu X, et al. Encapsulation of pancreatic islets within nano-thin functional polyethylene glycol coatings for enhanced insulin secretion. Tissue Eng Part A 2010; 16(7): 2217-28.
[143]
Fullagar B, Rao W, Gilor C, Xu F, He X, Adin CA. Nano-encapsulation of bilirubin in pluronic F127-chitosan improves uptake in beta cells and Increases islet viability and function after hypoxic stress. Cell Transplant 2017; 26(10): 1703-15.
[144]
Wang X, Sun F, Yin G, Wang Y, Liu B, Dong M. Tactile-sensing based on flexible pvdf nanofibers via electrospinning: A Review. Sensors (Basel) 2018; 18(2): pii E330.
[145]
Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrost 1995; 35(2-3): 151-60.
[146]
Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three‐dimensional nanofibrous poly (ϵ‐caprolactone) scaffolds. J Biomed Mater ResPart A 2003; 67(4): 1105-14.
[147]
Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A. Poly (vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 2005; 6(3): 1484-8.
[148]
Farzaneh Z, Pournasr B, Ebrahimi M, Aghdami N, Baharvand H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev 2010; 6(4): 601-10.
[149]
Reed CR, Han L, Andrady A, et al. Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plast Surg 2009; 62(5): 505-12.
[150]
Meng Z, Wang Y, Ma C, Zheng W, Li L, Zheng Y. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 2010; 30(8): 1204-10.
[151]
Ghasemi-Mobarakeh L, Morshed M, Karbalaie K, et al. The thickness of electrospun poly (epsilon-caprolactone) nanofibrous scaffolds influences cell proliferation. Int J Artif Organs 2009; 32(3): 150-8.
[152]
Xing Z-C, Han S-J, Shin Y-S, Kang I-K. Fabrication of biodegradable polyester nanocomposites by electrospinning for tissue engineering. J Nanomater 2011; 2011: 929378.
[153]
Desai TA. Micro-and nanoscale structures for tissue engineering constructs. Med Eng Phys 2000; 22(9): 595-606.
[154]
Nishimura I, Garrell RL, Hedrick M, Iida K, Osher S, Wu B. Precursor tissue analogs as a tissue-engineering strategy. Tissue Eng 2003; 9(4)(Suppl. 1): 77-89.
[155]
Fazili A, Gholami S, Zangi BM, Seyedjafari E, Gholami M. In vivo differentiation of mesenchymal stem cells into insulin producing cells on electrospun Poly-L-Lactide acid scaffolds coated with Matricaria Chamomilla L. Oil. Cell J (Yakhteh) 2016; 18(3): 310.
[156]
Di G, Du X, Qi X, et al. Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch. Invest Ophthalmol Vis Sci 2017; 58(10): 4344-54.
[157]
Hoveizi E, Khodadadi S, Tavakol S, Karima O, Nasiri-Khalili MA. Small molecules differentiate definitive endoderm from human induced pluripotent stem cells on PCL scaffold. Appl Biochem Biotechnol 2014; 173(7): 1727-36.
[158]
Hoveizi E, Massumi M, Ebrahimi‐barough S, Tavakol S, Ai J. Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold. Cell Biol Int 2015; 39(5): 591-9.
[159]
Ghanian MH, Farzaneh Z, Barzin J, et al. Nanotopographical control of human embryonic stem cell differentiation into definitive endoderm. J Biomed Mater Res A 2015; 103(11): 3539-53.
[160]
Chen J-P, Su C-H. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 2011; 7(1): 234-43.
[161]
Seyedjafari E, Soleimani M, Ghaemi N, Shabani I. Nanohydroxyapatite-coated electrospun poly (l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules 2010; 11(11): 3118-25.
[162]
Lin Y, Wang L, Zhang P, et al. Surface modification of poly (L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin. Acta Biomater 2006; 2(2): 155-64.
[163]
Hoveizi E, Nabiuni M, Parivar K, Rajabi‐Zeleti S, Tavakol S. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int 2014; 38(1): 41-9.
[164]
Takeuchi H, Nakatsuji N, Suemori H. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture. Sci Rep 2014; 4: 4488.
[165]
Nadri S, Barati G, Mostafavi H, Esmaeilzadeh A, Enderami SE. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artif Cells Nanomed Biotechnol 2017; 1-10.
[166]
Yadav N, Morris G, Harding SE, Ang S, Adams GG. Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocr Metab Immune Disord Drug Targets 2009; 9(1): 1-13.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy