[1]
Azmin, S.N.H.M.; Manan, Z.A.; Alwi, S.R.W.; Chua, L.S.; Mustaffa, A.A.; Yunus, N.A. Herbal processing and extraction technologies. Separ. Purif. Rev., 2016, 45(4), 305-320.
[2]
Nuchuchua, O.; Nejadnik, M.R.; Goulooze, S.C.; Ljeskovic, N.J.; Every, H.A.; Jiskoot, W. Characterization of drug delivery particles, produced by supercritical carbon dioxide technologies. J. Supercrit. Fluids, 2017, 128, 244-262.
[3]
Ratanajiajaroen, P.; Ohshima, M. Preparation of highly porous β-chitin structure through nonsolvent–solvent exchange-induced phase separation and supercritical CO2 drying. J. Supercrit. Fluids, 2012, 68, 31-38.
[4]
Diop, M.; Auberval, N.; Viciglio, A.; Langlois, A.; Bietiger, W.; Mura, C.; Peronet, C.; Bekel, A.; Julien David, D.; Zhao, M.; Pinget, M.; Jeandidier, N.; Vauthier, C.; Marchioni, E.; Frere, Y.; Sigrist, S. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Int. J. Pharm., 2015, 491(1-2), 402-408.
[5]
Dadparvar, M.; Wagner, S.; Wien, S.; Worek, F.; von Briesen, H.; Kreuter, J. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability. Eur. J. Pharm. Biopharm., 2014, 88(2), 510-517.
[6]
Fonte, P.; Araujo, F.; Seabra, V.; Reis, S.; van de Weert, M.; Sarmento, B. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int. J. Pharm., 2015, 496(2), 850-862.
[7]
Chow, S.F.; Wan, K.Y.; Cheng, K.K.; Wong, K.W.; Sun, C.C.; Baum, L.; Chow, A.H. Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. Eur. J. Pharm. Biopharm., 2015, 94, 436-449.
[8]
Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Res. Int., 2011, 44(1), 282-289.
[9]
Nie, H.; Lee, L.Y.; Tong, H.; Wang, C.H. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J. Control. Release, 2008, 129(3), 207-214.
[10]
Sliwinski, E.L.; Lavrijsen, B.W.M.; Vollenbroek, J.M.; van der Stege, H.J.; van Boekel, M.A.J.S.; Wouters, J.T.M. Effects of spray drying on physicochemical properties of milk protein-stabilised emulsions. Coll. Surface B, 2003, 31(1-4), 219-229.
[11]
Hoyer, H.; Schlocker, W.; Krum, K.; Bernkop-Schnürch, A. Preparation and evaluation of microparticles from thiolated polymers via air jet milling. Eur. J. Pharm. Biopharm., 2008, 69(2), 476-485.
[12]
Edris, A.E.; Kalemba, D.; Adamiec, J.; Piatkowski, M. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chem., 2016, 204, 326-333.
[13]
Seto, Y.; Suzuki, G.; Leung, S.S.; Chan, H.K.; Onoue, S. Development of an improved inhalable powder formulation of pirfenidone by spray-drying: in vitro characterization and pharmacokinetic profiling. Pharm. Res., 2016, 33(6), 1447-1455.
[14]
Huang, K.; Zhang, P.J.; Hu, B.; Yu, S.J. The effect of spray drying on sucrose-glycine caramel powder preparation. J. Sci. Food Agric., 2016, 96(7), 2319-2327.
[15]
Sun, W.; Ni, R.; Zhang, X.; Li, L.C.; Mao, S. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Drug Dev. Ind. Pharm., 2015, 41(6), 927-933.
[16]
Soazo, M.; Rubiolo, A.C.; Verdini, R.A. Effect of drying temperature and beeswax content on moisture isotherms of whey protein emulsion film. Procedia Food Sci., 2011, 1, 210-215.
[17]
Clark, B.D.; Molina, A.R.; Martin, G.G.; Wang, J.W.; Spain, E.M. Au nanoparticle clusters from deposition of a coalescing emulsion. J. Colloid Interface Sci., 2015, 450, 417-423.
[18]
de Paz, E.; Martín, Á.; Duarte, C.M.M.; Cocero, M.J. Formulation of β-carotene with poly-(ε-caprolactones) by PGSS process. Powder Technol., 2012, 217, 77-83.
[19]
Chen, A.Z.; Pu, X.M.; Yin, G.F.; Zhao, C.; Wang, S.B.; Liu, Y.G.; Wang, G.Y.; Kang, Y.Q. Study of lysozyme-polymer composite microparticles in supercritical CO2. J. Appl. Polym. Sci., 2012, 125(4), 3175-3183.
[20]
Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hu, J.Y. Effect of operating parameters on yield and anti-oxidative activity of puerarin in supercritical process. J. Fiber. Bioeng. Inform., 2009, 2, 198-205.
[21]
Zhao, Z.; Li, Y.; Chen, A.Z.; Zheng, Z.J.; Hu, J.Y.; Li, J.S.; Li, G. Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind. Eng. Chem. Res., 2013, 52(10), 3752-3761.
[22]
Xie, M.B.; Li, Y.; Zhao, Z.; Chen, A.Z.; Li, J.S.; Hu, J.Y.; Li, G.; Li, Z. Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. J. Supercrit. Fluids, 2015, 103, 1-9.
[23]
Wang, J.S.; Wai, C.M.; Brown, G.J.; Apt, S.D. Two-dimensional nanoparticle cluster formation in supercritical fluid CO2. Langmuir, 2016, 32(18), 4635-4642.
[24]
Shen, Y.B.; Du, Z.; Tang, C.; Guan, Y.X.; Yao, S.J. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm., 2016, 505(1-2), 223-233.
[25]
Beckman, E.J. Supercritical and near-critical CO2 in green chemical synthesis and processing. J. Supercrit. Fluids, 2004, 28(2-3), 121-191.
[26]
Ribaut, T.; Oberdisse, J.; Annighofer, B.; Fournel, B.; Sarrade, S.; Haller, H.; Lacroix-Desmazes, P. Solubility and self-assembly of amphiphilic gradient and block copolymers in supercritical CO2. J. Phys. Chem. B, 2011, 115(5), 836-843.
[27]
Tabernero, A.; del Valle, E.M.M.; Galan, M.A. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem. Eng. Process., 2012, 60, 9-25.
[28]
Wu, W.; Zhang, J.; Han, B.; Chen, J.; Liu, Z.; Jiang, T.; He, J.; Li, W. Solubility of room-temperature ionic liquid in supercritical CO2 with and without organic compounds. Chem. Commun., 2003, 9(12), 1412-1413.
[29]
Esfandiari, N.; Ghoreishi, S.M. Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process. AAPS PharmSciTech, 2015, 16(6), 1263-1269.
[30]
Mullers, K.C.; Paisana, M.; Wahl, M.A. Simultaneous formation and micronization of pharmaceutical cocrystals by Rapid Expansion of Supercritical Solutions (RESS). Pharm. Res., 2015, 32(2), 702-713.
[31]
Kalani, M.; Yunus, R. Application of supercritical antisolvent method in drug encapsulation: A review. Int. J. Nanomedicine, 2011, 6, 1429-1442.
[32]
Lee, D.I.; Ling, Y.; Sung, M.H.; Park, I.H. Preparation and characterization of microparticles of poly(gamma-glutamic acid) containing lysozyme by means of Supercritical Anti-Solvent (SAS) precipitation process. Polym-Korea, 2007, 31(2), 168-176.
[33]
Elvassore, N.; Bertucco, A.; Caliceti, P. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J. Pharm. Sci., 2001, 90(10), 1628-1636.
[34]
Chang, S.C.; Lee, M.J.; Lin, H.M. Role of phase behavior in micronization of lysozyme via a supercritical anti-solvent process. Chem. Eng. J., 2008, 139(2), 416-425.
[35]
Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hu, J.Y.; Zhao, Z.; Mok, D.K.W. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles. J. Supercrit. Fluids, 2009, 49(3), 394-402.
[36]
Chen, A.Z.; Li, Y.; Chau, F.T.; Lau, T.Y.; Hu, J.Y.; Zhao, Z.; Mok, D.K.W. Microencapsulation of puerarin nanoparticles by poly(L-lactide) in a supercritical CO2 process. Acta Biomater., 2009, 5(8), 2913-2919.
[37]
Zhao, Z.; Chen, A.Z.; Li, Y.; Hu, J.Y.; Liu, X.Q.; Li, J.S.; Zhang, Y.; Li, G.; Zheng, Z. Fabrication of silk fibroin nanoparticles for controlled drug delivery. J. Nanopart. Res., 2012, 14(4), 1-10.
[38]
Muhrer, G.; Mazzotti, M. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent. Biotechnol. Prog., 2003, 19(2), 549-556.
[39]
Moshashaee, S.; Bisrat, M.; Forbes, R.T.; Quinn, E.A.; Nyqvist, H.; York, P. Supercritical fluid processing of proteins: Lysozyme precipitation from aqueous solution. J. Pharm. Pharmacol., 2003, 55(2), 185-192.
[40]
Carpenter, J.F.; Prestrelski, S.J.; Arakawa, T. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. enzyme activity and calorimetric studies. Arch. Biochem. Biophys., 1993, 303(2), 456-464.
[41]
Prestrelski, S.J.; Arakawa, T.; Carpenter, J.F. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: II. structural studies using infrared spectroscopy. Arch. Biochem. Biophys., 1993, 303(2), 465-473.
[42]
Labuschagne, P.W.; Naicker, B.; Kalombo, L. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique. Int. J. Pharm., 2016, 499(1-2), 205-216.
[43]
Salmaso, S.; Elvassore, N.; Bertucco, A.; Caliceti, P. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process. J. Pharm. Sci., 2009, 98(2), 640-650.
[44]
Sellers, S.P.; Clark, G.S.; Sievers, R.E.; Carpenter, J.F. Dry powders of stable protein formulations from aqueous solutions prepared using supercritical CO2-assisted aerosolization. J. Pharm. Sci., 2001, 90(6), 785-797.
[45]
Sievers, R.E.; Karst, P.; Milewski, P.D.; Sellers, S.P.; Miles, B.A.; Schaefer, J.D.; Stoldt, C.R.; Xu, C.Y. Formation of aqueous small droplet aerosols assisted by supercritical carbon dioxide. Aerosol Sci. Technol., 1999, 30(1), 3-15.
[46]
Sievers, R.E.; Milewski, P.D.; Sellers, S.P.; Miles, B.A.; Korte, B.J.; Kusek, K.D.; Clark, G.S.; Mioskowski, B.; Villa, J.A. Supercritical and near-critical carbon dioxide assisted low temperature bubble drying. Ind. Eng. Chem. Res., 2000, 39(12), 4831-4836.
[47]
Sievers, R.E.; Huang, E.T.S.; Villa, J.A.; Kawamoto, J.K.; Evans, M.M.; Brauer, P.R. Low-temperature manufacturing of fine pharmaceutical powders with supercritical fluid aerosolization in a Bubble Dryer (R). Pure Appl. Chem., 2001, 73(8), 1299-1303.
[48]
Sievers, R.E.; Huang, E.T.S.; Villa, J.A.; Engling, G.; Brauer, P.R. Micronization of water-soluble or alcohol-soluble pharmaceuticals and model compounds with a low-temperature bubble dryer®. J. Supercrit. Fluids, 2003, 26(1), 9-16.
[49]
Villa, J.A.; Huang, E.T.S.; Cape, S.P.; Sievers, R.E. Synthesis of composite microparticles with a mixing cross. Aerosol Sci. Technol., 2005, 39(6), 473-484.
[50]
Adler, M.; Lee, G. Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J. Pharm. Sci., 1999, 88(2), 199-208.
[51]
Cape, S.P.; Villa, J.A.; Huang, E.T.S.; Yang, T.H.; Carpenter, J.F.; Sievers, R.E. Preparation of active proteins, vaccines and phamaceuticals as fine powders using supercritical or near-critical fluids. Pharm. Res-Dordr., 2008, 25(9), 1967-1990.
[52]
Reverchon, E.; Spada, A. Crystalline microparticles of controlled size produced by supercritical-assisted atomization. Ind. Eng. Chem. Res., 2004, 43(6), 1460-1465.
[53]
Sievers, R.E.; Quinn, B.P.; Cape, S.P.; Searles, J.A.; Braun, C.S.; Bhagwat, P.; Rebits, L.G.; McAdams, D.H.; Burger, J.L.; Best, J.A.; Lindsay, L.; Hernandez, M.T.; Kisich, K.O.; Iacovangelo, T.; Kristensen, D.; Chen, D. Near-critical fluid micronization of stabilized vaccines, antibiotics and anti-virals. J. Supercrit. Fluids, 2007, 42(3), 385-391.
[54]
Manion, J.R.; Cape, S.P.; McAdams, D.H.; Rebits, L.G.; Evans, S.; Sievers, R.E. Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Sci. Technol., 2012, 46(4), 403-410.
[55]
Shoyele, S.A.; Cawthorne, S. Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev., 2006, 58(9-10), 1009-1029.
[56]
Kisich, K.O.; Higgins, M.P.; Park, I.; Cape, S.P.; Lindsay, L.; Bennett, D.J.; Winston, S.; Searles, J.; Sievers, R.E. Dry powder measles vaccine: Particle deposition, virus replication, and immune response in cotton rats following inhalation. Vaccine, 2011, 29(5), 905-912.
[57]
Gießauf, A.; Gamse, T. A simple process for increasing the specific activity of porcine pancreatic lipase by supercritical carbon dioxide treatment. J. Mol. Catal., B Enzym., 2000, 9(1-3), 57-64.
[58]
Adami, R.; Osseo, L.S.; Reverchon, E. Micronization of lysozyme by supercritical assisted atomization. Biotechnol. Bioeng., 2009, 104(6), 1162-1170.
[59]
Cai, M.Q.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer (SAA-HCM) for micronization of levofloxacin hydrochloride. J. Supercrit. Fluids, 2008, 43(3), 524-534.
[60]
Wang, Q.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Controllable preparation and formation mechanism of BSA microparticles using supercritical assisted atomization with an enhanced mixer. J. Supercrit. Fluid, 2011, 56(1), 97-104.
[61]
Du, Z.; Tang, C.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer. Int. J. Pharm., 2013, 454(1), 174-182.
[62]
Du, Z.; Shen, Y.B.; Tang, C.; Guan, Y.X.; Yao, S.J.; Zhu, Z.Q. Supercritical fluid assisted production of chitosan oligomers micrometric powders. Carbohydr. Polym., 2014, 102, 400-408.
[63]
Shen, Y.B.; Du, Z.; Wang, Q.; Guan, Y.X.; Yao, S.J. Preparation of chitosan microparticles with diverse molecular weights using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Powder Technol., 2014, 254, 416-424.
[64]
Shen, Y.B.; Guan, Y.X.; Yao, S.J. Supercritical fluid assisted production of micrometric powders of the labile trypsin and chitosan/trypsin composite microparticles. Int. J. Pharm., 2015, 489(1-2), 226-236.
[65]
Shen, Y.B.; Du, Z.; Tang, C.; Guan, Y.X.; Yao, S.J. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int. J. Pharm., 2016, 505(1-2), 223-233.
[66]
Reverchon, E.; Antonacci, A. Chitosan microparticles production by supercritical fluid processing. Ind. Eng. Chem. Res., 2006, 45(16), 5722-5728.
[67]
Chew, N.Y.; Tang, P.; Chan, H.K.; Raper, J.A. How much particle surface corrugation is sufficient to improve aerosol performance of powders. Pharm. Res.-. Dord., 2005, 22(1), 148-152.
[68]
Svitova, T.F.; Wetherbee, M.J.; Radke, C.J. Dynamics of surfactant sorption at the air/water interface: Continuous-flow tensiometry. J. Coll. Interf. Sci., 2003, 261(1), 170-179.
[69]
Seydel, P.; Blomer, J.; Bertling, J. Modeling particle formation at spray drying using population balances. Dry. Technol., 2006, 24(2), 137-146.
[70]
Thies, C.; Dos Santos, I.R.; Richard, J.; Vandevelde, V.; Rolland, H.; Benoit, J.P. A supercritical fluid-based coating technology 1: process considerations. J. Microencapsul., 2003, 20(1), 87-96.
[71]
Ribeiro Dos Santos, I.; Richard, J.; Pech, B.; Thies, C.; Benoit, J.P. Microencapsulation of protein particles within lipids using a novel supercritical fluid process. Int. J. Pharm., 2002, 242(1-2), 69-78.
[72]
Dos Santos, I.R.; Richard, J.; Thies, C.; Pech, B.; Benoit, J.P. A supercritical fluid-based coating technology. 3: preparation and characterization of bovine serum albumin particles coated with lipids. J. Microencapsul., 2003, 20(1), 110-128.
[73]
Murillo-Cremaes, N.; Subra-Paternault, P.; Saurina, J.; Roig, A.; Domingo, C. Compressed antisolvent process for polymer coating of drug-loaded aerogel nanoparticles and study of the release behavior. Colloid Polym. Sci., 2014, 292(10), 2475-2484.
[74]
Chen, A.Z.; Wang, G.Y.; Wang, S.B.; Li, L.; Liu, Y.G.; Zhao, C. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2. Int. J. Nanomedicine, 2012, 7, 3013-3022.
[75]
Marra, F.; De Marco, I.; Reverchon, E. Numerical analysis of the characteristic times controlling supercritical antisolvent micronization. Chem. Eng. Sci., 2012, 71, 39-45.
[76]
De Marco, I.; Knauer, O.; Cice, F.; Braeuer, A.; Reverchon, E. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization: the influence of solvents. Chem. Eng. J., 2012, 203, 71-80.
[77]
Jia, J.F.; Wang, W.C.; Gao, Y.H.; Zhao, Y.P. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent. Ultrason. Sonochem., 2015, 27, 389-394.
[78]
Xie, M.B.; Li, Y.; Zhao, Z.; Chen, A.Z.; Li, J.S.; Li, Z.; Li, G.; Lin, X.F. Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2. Mater. Lett., 2016, 167, 175-178.
[79]
Xie, M.B.; Fan, D.J.; Chen, Y.F.; Zhao, Z.; He, X.W.; Li, G.; Chen, A.Z.; Wu, X.J.; Li, J.S.; Li, Z.; Hunt, J.A.; Li, Y.; Lan, P. An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.
[80]
Jia, J.F.; Wang, J.; Zhang, K.R.; Zhou, D.; Ge, F.H.; Zhao, Y.P. Aescin nanoparticles prepared using SEDS: composition stability and dissolution enhancement. J. Supercrit. Fluids, 2017, 130, 267-272.
[81]
Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater., 2017, 6(16), 1-31.
[82]
Nerome, H.; Machmudah, S. Wahyudiono.; Fukuzato, R.; Higashiura, T.; Youn, Y.S.; Lee, Y.W.; Goto, M. Nanoparticle formation of lycopene/beta-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluids, 2013, 83, 97-103.
[83]
Chen, F.; Yin, G.; Liao, X.; Yang, Y.; Huang, Z.; Gu, J.; Yao, Y.; Chen, X.; Gao, H. Preparation, characterization and in vitro release properties of morphine-loaded PLLA-PEG-PLLA microparticles via solution enhanced dispersion by supercritical fluids. J. Mater. Sci. Mater. Med., 2013, 24(7), 1693-1705.
[84]
Boschetto, D.L.; Dalmolin, I.; de Cesaro, A.M.; Rigo, A.A.; Ferreira, S.R.S.; Meireles, M.A.A.; Batista, E.A.C.; Oliveira, J.V. Phase behavior and process parameters effect on grape seed extract encapsulation by SEDS technique. Ind. Crops Prod., 2013, 50, 352-360.
[85]
Machado, F.R.S.; Reis, D.F.; Boschetto, D.L.; Burkert, J.F.M.; Ferreira, S.R.S.; Oliveira, J.V.; Burkert, C.A.V. Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Ind. Crops Prod., 2014, 54, 17-21.
[86]
Xie, M.B.; Fan, D.J.; Zhao, Z.; Li, Z.; Li, G.; Chen, Y.F.; He, X.W.; Chen, A.Z.; Li, J.S.; Lin, X.F.; Zhi, M.; Li, Y.; Lan, P. Nano-curcumin prepared via supercritical: Improved anti-bacterial, anti-oxidant and anti-cancer efficacy. Int. J. Pharm., 2015, 496(2), 732-740.
[87]
Yan, T.X.; Cheng, Y.; Wang, Z.X.; Huang, D.C.; Miao, H.G.; Zhang, Y. Preparation and characterization of baicalein powder micronized by the SEDS process. J. Supercrit. Fluids, 2015, 104, 177-182.
[88]
Yang, G.; Zhao, Y.P.; Feng, N.P.; Zhang, Y.T.; Liu, Y.; Dang, B.L. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J. Pharm. Sci., 2015, 10(3), 194-202.
[89]
Huang, X.; Zhang, Y.; Yin, G.; Pu, X.; Liao, X.; Huang, Z.; Chen, X.; Yao, Y. Tumor-targeted paclitaxel-loaded folate conjugated poly(ethylene glycol)-poly(L-lactide) microparticles produced by supercritical fluid technology. J. Mater. Sci. Mater. Med., 2015, 26(2), 95.
[90]
Li, S.N.; Zhao, Y.P. Preparation of zein nanoparticles by using solution-enhanced dispersion with supercritical CO2 and elucidation with computational fluid dynamics. Int. J. Nanomedicine, 2017, 12, 3485-3494.
[91]
Xiao, K.F.; Wang, W.Q.; Hu, D.D.; Qu, Y.P.; Hao, Z.H.; Wang, L.L. Cefquinome controlled size submicron particles precipitation by SEDS process using annular gap nozzle. Int. J. Chem. Eng., 2017, 1-8.
[92]
Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids, 2018, 138, 247-258.
[93]
Amara, Z.; Bellamy, J.F.B.; Horvath, R.; Miller, S.J.; Beeby, A.; Burgard, A.; Rossen, K.; Poliakoff, M.; George, M.W. Applying green chemistry to the photochemical route to artemisinin. Nat. Chem., 2015, 7(6), 489-495.
[94]
Yu, H.M.; Zhao, X.H.; Zu, Y.G.; Zhang, X.J.; Zu, B.S.; Zhang, X.N. Preparation and characterization of micronized artemisinin via a rapid expansion of supercritical solutions (RESS) method. Int. J. Mol. Sci., 2012, 12(4), 5060-5073.
[95]
Prosapio, V.; Reverchon, E.; De Marco, I. Incorporation of liposoluble
vitamins within PVP microparticles using supercritical antisolvent
precipitation. J. CO2 Util., 2017, 19, 230-237.
[96]
Xie, M.B.; Fan, D.J.; Li, Y.; He, X.W.; Chen, X.M.; Chen, Y.F.; Zhu, J.X.; Xu, G.B.; Wu, X.J.; Lan, P. Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. Int. J. Nanomedicine, 2017, 12, 7751-7761.
[97]
Aliakbarian, B.; Paini, M.; Adami, R.; Perego, P.; Reverchon, E. Use of supercritical assisted atomization to produce nanoparticles from olive pomace extract. Innov. Food Sci. Emerg., 2017, 40, 2-9.