[1]
Washietl, S.; Will, S.; Hendrix, D.A.; Goff, L.A.; Rinn, J.L.; Berger, B.; Kellis, M. Computational analysis of noncoding RNAs. Wiley Interdiscip. Rev. RNA, 2012, 3(6), 759-778.
[2]
Mattick, J.S.; Makunin, I.V. Non-coding RNA. Hum. Mol. Genet., 2006, 15, 17-29.
[3]
Costa, F.F. Non-coding RNAs: lost in translation? Gene, 2007, 386(1), 1-10.
[4]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[5]
Yogev, O.; Lagos, D. Noncoding RNAs and cancer. Silence, 2011, 2(1), 6.
[6]
Bali, K.K.; Kuner, R. Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol. Med., 2014, 20(8), 437-448.
[7]
Lutz, B.M.; Bekker, A.; Tao, Y.X. Noncoding RNAs new players in chronic pain. J. Am. Soc. Anesthesio., 2014, 121(2), 409-417.
[8]
Bolha, L.; Ravnik-Glavač, M.; Glavac, D. Long noncoding RNAs as biomarkers in cancer. Dis. Markers, 2017, 2017, 7243968.
[9]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[10]
Kouhkan, F.; Soleimani, M.; Daliri, M.; Behmanesh, M.; Mobarra, N. miR-451 up-regulation, induce erythroid differentiation of CD133+ cells independent of cytokine cocktails. Iran. J. Basic Med. Sci., 2013, 16(6), 756.
[11]
Kouhkan, F.; Hafizi, M.; Mobarra, N.; Mossahebi-Mohammadi, M.; Mohammadi, S.; Behmanesh, M.; Zomorrod, M.S.; Alizadeh, S.; Lahmy, R.; Daliri, M. miRNAs: a new method for erythroid differentiation of hematopoietic stem cells without the presence of growth factors. Appl. Biochem. Biotechnol., 2014, 172(4), 2055-2069.
[12]
Lahmy, R.; Soleimani, M.; Sanati, M.H.; Behmanesh, M.; Kouhkan, F.; Mobarra, N. miRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol. Biol. Rep., 2014, 41(4), 2055-2066.
[13]
Lahmy, R.; Soleimani, M.; Sanati, M.H.; Behmanesh, M.; Kouhkan, F.; Mobarra, N. Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J. Tissue Eng. Regen. Med., 2016, 10(6), 527-534.
[14]
Bae, Y.H.; Mrsny, R.J.; Park, K. Cancer targeted drug delivery; Springer, 2013.
[15]
Mendes Soares, L.M.; Valcárcel, J. The expanding transcriptome: the genome as the ‘Book of Sand’. EMBO J., 2006, 25(5), 923-931.
[16]
Gunawardane, L.S.; Saito, K.; Nishida, K.M.; Miyoshi, K.; Kawamura, Y.; Nagami, T.; Siomi, H.; Siomi, M.C. A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science, 2007, 315(5818), 1587-1590.
[17]
Evans, D.; Marquez, S.M.; Pace, N.R. RNase P: interface of the RNA and protein worlds. Trends Biochem. Sci., 2006, 31(6), 333-341.
[18]
Reiner, R.; Ben-Asouli, Y.; Krilovetzky, I.; Jarrous, N. A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes Dev., 2006, 20(12), 1621-1635.
[19]
Smit, S.; Widmann, J.; Knight, R. Evolutionary rates vary among rRNA structural elements. Nucleic Acids Res., 2007, 35(10), 3339-3354.
[20]
Yusupov, M.M.; Yusupova, G.Z.; Baucom, A.; Lieberman, K.; Earnest, T.N.; Cate, J.; Noller, H.F. Crystal structure of the ribosome at 5.5 Å resolution. Science, 2001, 292(5518), 883-896.
[21]
Agrawal, N.; Dasaradhi, P.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA interference: biology, mechanism and applications. Microbiol. Mol. Biol. Rev., 2003, 67(4), 657-685.
[22]
Zeng, Y.; Yi, R.; Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci., 2003, 100(17), 9779-9784.
[23]
Valencia-Sanchez, M.A.; Liu, J.; Hannon, G.J.; Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev., 2006, 20(5), 515-524.
[24]
Bachellerie, J.P.; Cavaillé, J.; Hüttenhofer, A. The expanding snoRNA world. Biochimie, 2002, 84(8), 775-790.
[25]
Tycowski, K.T.; Smith, C.M.; Shu, M.D.; Steitz, J.A. A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc. Nal. Aca. Sci., 1996, 93(25), 14480-14485.
[26]
Kiss, T. Biogenesis of small nuclear RNPs. J. Cell Sci., 2004, 117(25), 5949-5951.
[27]
Vogel, J.; Wagner, E.G.H. Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol., 2007, 10(3), 262-270.
[28]
Hershberg, R.; Altuvia, S.; Margalit, H. A survey of small RNA- encoding genes in Escherichia coli. Nucleic Acids Res., 2003, 31(7), 1813-1820.
[29]
Grotwinkel, J.T.; Wild, K.; Segnitz, B.; Sinning, I. SRP RNA remodeling by SRP68 explains its role in protein translocation. Science, 2014, 344(6179), 101-104.
[30]
Zwieb, C.; van Nues, R.W.; Rosenblad, M.A.; Brown, J.D.; Samuelsson, T. A nomenclature for all signal recognition particle RNAs. RNA, 2005, 11(1), 7-13.
[31]
Collins, K. Forms and functions of telomerase RNA.In Non-protein coding RNAs; Springer, 2009, pp. 285-301.
[32]
Xie, P. Model for processive nucleotide and repeat additions by the
telomerasearXiv preprint arXiv: 0708.2527, 2007.
[33]
Goodenbour, J.M.; Pan, T. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res., 2006, 34(21), 6137-6146.
[34]
Mohn, F.; Handler, D.; Brennecke, J. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science, 2015, 348(6236), 812-817.
[35]
Mao, C.; Bhardwaj, K.; Sharkady, S.M.; Fish, R.I.; Driscoll, T.; Wower, J.; Zwieb, C.; Sobral, B.W.; Williams, K.P. Variations on the tmRNA gene. RNA Biol., 2009, 6(4), 355-361.
[36]
Hajjari, M.; Behmanesh, M.; Sadeghizadeh, M.; Zeinoddini, M. Up-regulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Med. Oncol., 2013, 30(3), 1-4.
[37]
Hajjari, M.; Salavaty, A. HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol. Med., 2015, 12(1), 1-9.
[38]
Sado, T.; Brockdorff, N. Advances in understanding chromosome
silencing by the long non-coding RNA Xist Philos. Tran. R. Soc.
B. Biol. Sci, 2013, 368(1609), 20110325.
[39]
Laganà, A.; Ferro, A.; Croce, C.M. Editorial: bioinformatics of non-coding RNAs with applications to biomedicine: recent advances and open challenges. Front. Bioeng. Biotechnol., 2015, 3, 156.
[40]
Hüttenhofer, A.; Vogel, J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res., 2006, 34(2), 635-646.
[41]
Washietl, S.; Hofacker, I.L.; Stadler, P.F. Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2454-2459.
[42]
Lund, E.; Dahlberg, J.E. Spacer transfer RNAs in ribosomal RNA transcripts of E. coli: processing of 30S ribosomal RNA in vitro. Cell, 1977, 11(2), 247-262.
[43]
Ilott, N.E.; Ponting, C.P. Predicting long non-coding RNAs using RNA sequencing. Methods, 2013, 63(1), 50-59.
[44]
Ozsolak, F.; Platt, A.R.; Jones, D.R.; Reifenberger, J.G.; Sass, L.E.; McInerney, P.; Thompson, J.F.; Bowers, J.; Jarosz, M.; Milos, P.M. Direct RNA sequencing. Nature, 2009, 461(7265), 814-818.
[45]
Kang, W.; Friedländer, M.R. Computational prediction of miRNA genes from small RNA sequencing data. Front. Bioeng. Biotechnol., 2015, 3, 7.
[46]
Ebrahimi-Askari, R.; Behmanesh, M.; Soleimani, M. Analyses of methylation status of CpG islands in promoters of miR-9 genes family in human gastric adenocarcinoma. Mol. Biol. Res. Commun., 2015, 4(2), 73-82.
[47]
Behmanesh, M.; Sakumi, K.; Tsuchimoto, D.; Torisu, K.; Ohnishi-Honda, Y.; Rancourt, D.E.; Nakabeppu, Y. Characterization of the structure and expression of mouse Itpa gene and its related sequences in the mouse genome. DNA Res., 2005, 12(1), 39-51.
[48]
Kashi, K.; Lindsey, H.; Alessandro, B. Piero, Carninci. Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim. Biophys. Acta. (BBA)-Gene. Regul. Mech, 2016, 1859(1), 3-15.
[49]
Li, Y.; Zhang, Y.; Li, S.; Lu, J.; Chen, J.; Wang, Y.; Li, Y.; Xu, J.; Li, X. Genome-wide DNA methylome analysis reveals epigenetically dysregulated non-coding RNAs in human breast cancer. Sci. Rep., 2015, 5, 8790.
[50]
Rederstorff, M.; Hüttenhofer, A. cDNA library generation from ribonucleoprotein particles. Nat. Protoc., 2011, 6(2), 166-174.
[51]
Harbers, M. The current status of cDNA cloning. Genomics, 2008, 91(3), 232-242.
[52]
Marker, C.; Zemann, A.; Terhörst, T.; Kiefmann, M.; Kastenmayer, J.P.; Green, P.; Bachellerie, J.P.; Brosius, J.; Hüttenhofer, A. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr. Biol., 2002, 12, 23.
[53]
Yuan, G.; Klämbt, C.; Bachellerie, J.P.; Brosius, J.; Hüttenhofer, A. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res., 2003, 31(10), 2495-2507.
[54]
Vogel, J.; Bartels, V.; Tang, T.H.; Churakov, G.; Slagter-Jäger, J.G.; Hüttenhofer, A.; Wagner, E.G.H. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res., 2003, 31(22), 6435-6443.
[55]
Kawano, M.; Reynolds, A.A.; Miranda-Rios, J.; Storz, G. Detection of 5′-and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res., 2005, 33(3), 1040-1050.
[56]
Rederstorff, M. Generation of cDNA libraries from RNP-derived regulatory noncoding RNAs in Genomic Imprinting; Springer, 2012, pp. 211-218.
[57]
Li, J.P.; Liu, L.H.; Li, J.; Chen, Y.; Jiang, X.W.; Ouyang, Y.R.; Liu, Y.Q.; Zhong, H.; Li, H.; Xiao, T. Microarray expression profile of long noncoding RNAs in human osteosarcoma. Biochem. Biophys. Res. Commun., 2013, 433(2), 200-206.
[58]
He, H.; Cai, L.; Skogerbo, G.; Deng, W.; Liu, T.; Zhu, X.; Wang, Y.; Jia, D.; Zhang, Z.; Tao, Y. Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray. Nucleic Acids Res., 2006, 34(10), 2976-2983.
[59]
Zhu, J.; Liu, S.; Ye, F.; Shen, Y.; Tie, Y.; Zhu, J.; Jin, Y.; Zheng, X.; Wu, Y.; Fu, H. The long noncoding RNA expression profile of hepatocellular carcinoma identified by microarray analysis. PLoS One, 2014, 9(7), e101707.
[60]
Raghavan, R.; Groisman, E.A.; Ochman, H. Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res., 2011, 21(9), 1487-1497.
[61]
Tjaden, B.; Saxena, R.M.; Stolyar, S.; Haynor, D.R.; Kolker, E.; Rosenow, C. Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. Nucleic Acids Res., 2002, 30(17), 3732-3738.
[62]
Zhang, A.; Wassarman, K.M.; Rosenow, C.; Tjaden, B.C.; Storz, G.; Gottesman, S. Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol., 2003, 50(4), 1111-1124.
[63]
Inada, M.; Guthrie, C. Identification of Lhp1p-associated RNAs by microarray analysis in Saccharomycescerevisiae reveals association with coding and noncoding RNAs. Proc. Natl. Acad. Sci. USA, 2004, 101(2), 434-439.
[64]
Nookaew, I.; Papini, M.; Pornputtpong, N.; Scalcinati, G.; Fagerberg, L.; Uhlén, M.; Nielsen, J. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res., 2012, 40(20), 10084-10097.
[65]
Wang, Q.; Nowak, C.M.; Korde, A.; Oh, D-H.; Dassanayake, M.; Donze, D. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biol., 2014, 12(1), 89.
[66]
Shi, Y.; Shang, J. Long Noncoding RNA Expression Profiling using Arraystar LncRNA Microarrays. Long Non-Coding RNAs: Methods and Protocols; Springer, 2016, pp. 43-61.
[67]
Altuvia, S. Identification of bacterial small non-coding RNAs: experimental approaches. Curr. Opin. Microbiol., 2007, 10(3), 257-261.
[68]
Lorenz, C.; Gesell, T.; Zimmermann, B.; Schoeberl, U.; Bilusic, I.; Rajkowitsch, L.; Waldsich, C.; Von Haeseler, A.; Schroeder, R. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res., 2010, 38(11), 3794-3808.
[69]
Zimmermann, B.; Bilusic, I.; Lorenz, C.; Schroeder, R. Genomic SELEX: a discovery tool for genomic aptamers. Methods, 2010, 52(2), 125-132.
[70]
Larsson, P. Computational approaches to the identification and characterization of non-coding RNA genes; Uppsala Acta Universitatis Upsaliensis, 2009, p. 57.
[71]
Lertampaiporn, S.; Thammarongtham, C.; Nukoolkit, C.; Kaewkamnerdpong, B.; Ruengjitchatchawalya, M. Identification of non-coding RNAs with a new composite feature in the hybrid random forest ensemble algorithm. Nucleic Acids Res., 2014, 42(11), e93.
[72]
Bao, M.; Cervantes, M.C.; Zhong, L.; Wang, J.T. Searching for non-coding RNAs in genomic sequences using ncRNAscout. Genomics Proteomics Bioinformatics, 2012, 10(2), 114-121.
[73]
Niazi, F.; Valadkhan, S. Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs. RNA, 2012, 18(4), 825-843.
[74]
Jones, S.J. Prediction of genomic functional elements. Annu. Rev. Genomics Hum. Genet., 2006, 7, 315-338.
[75]
Zhang, R.; Zhang, L.; Yu, W. Genome-wide expression of non-coding RNA and global chromatin modification. Acta Biochim. Biophys. Sin., 2012, 44(1), 40-47.
[76]
Yamasaki, C.; Murakami, K.; Takeda, J-I.; Sato, Y.; Noda, A.; Sakate, R.; Habara, T.; Nakaoka, H.; Todokoro, F.; Matsuya, A. H-InvDB in 2009: extended database and data mining resources for human genes and transcripts. Nucleic Acids Res., 2010, 38, 626-632.
[77]
Quek, X.C.; Thomson, D.W.; Maag, J.L.; Bartonicek, N.; Signal, B.; Clark, M.B.; Gloss, B.S.; Dinger, M.E. lncRNAdb v2. 0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res., 2014, 43(D1), 68-73.
[78]
Zhang, Z.; Yu, J.; Li, D.; Zhang, Z.; Liu, F.; Zhou, X.; Wang, T.; Ling, Y.; Su, Z. PMRD: plant microRNA database. Nucleic Acids Res., 2010, 38, 806-813.
[79]
Brown, J.W.; Echeverria, M.; Qu, L-H.; Lowe, T.M.; Bachellerie, J-P.; Hüttenhofer, A.; Kastenmayer, J.P.; Green, P.J.; Shaw, P.; Marshall, D.F. Plant snoRNA database. Nucleic Acids Res., 2003, 31(1), 432-435.
[80]
Pang, K.C.; Stephen, S.; Dinger, M.E.; Engström, P.G.; Lenhard, B.; Mattick, J.S. RNAdb 2.0- an expanded database of mammalian non-coding RNAs. Nucleic Acids Res., 2007, 35, 178-182.
[81]
Kozomara, A.; Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 2013, 42(D1), 68-73.
[82]
Sethupathy, P.; Corda, B.; Hatzigeorgiou, A.G. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 2006, 12(2), 192-197.
[83]
Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res., 2009, 37, 105-110.
[84]
Chan, P.P.; Lowe, T.M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res., 2016, 44(1), 184-189.
[85]
Leung, Y.Y.; Kuksa, P.P.; Amlie-Wolf, A.; Valladares, O.; Ungar, L.H.; Kannan, S.; Gregory, B.D.; Wang, L-S. DASHR: database of small human noncoding RNAs. Nucleic Acids Res., 2016, 44(1), 216-222.
[86]
Volders, P-J.; Verheggen, K.; Menschaert, G.; Vandepoele, K.; Martens, L.; Vandesompele, J.; Mestdagh, P. An update on LNCipedia: A database for annotated human lncRNA sequences. Nucleic Acids Res., 2015, 43(1), 174-180.
[87]
Xie, C.; Yuan, J.; Li, H.; Li, M.; Zhao, G.; Bu, D.; Zhu, W.; Wu, W.; Chen, R.; Zhao, Y. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res., 2014, 42(1), 98-103.
[88]
Zhao, Y.; Yuan, J.; Chen, R. NONCODEv4: Annotation of Noncoding RNAs with Emphasis on Long Noncoding RNAs. Long Non-Coding RNAs: Methods and Protocols; Springer, 2016, pp. 243-254.
[89]
Bonnici, V.; Russo, F.; Bombieri, N.; Pulvirenti, A.; Giugno, R. Comprehensive reconstruction and visualization of non-coding regulatory networks in human. Front. Bioeng. Biotechnol., 2014, 2, 69.
[90]
Szymanski, M.; Erdmann, V.A.; Barciszewski, J. Noncoding RNAs database (ncRNAdb). Nucleic Acids Res., 2007, 35, 162-164.
[91]
Paraskevopoulou, M.D.; Vlachos, I.S.; Karagkouni, D.; Georgakilas, G.; Kanellos, I.; Vergoulis, T.; Zagganas, K.; Tsanakas, P.; Floros, E.; Dalamagas, T. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res., 2016, 44, 231-238.
[92]
Yang, J-H.; Li, J-H.; Jiang, S.; Zhou, H.; Qu, L-H. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res., 2013, 41, 177-187.
[93]
Panwar, B.; Arora, A.; Raghava, G.P. Prediction and classification of ncRNAs using structural information. BMC Genomics, 2014, 15(1), 127.
[94]
Hermann, T.; Patel, D.J. RNA bulges as architectural and recognition motifs. Structure, 2000, 8(3), 47-54.
[95]
Lee, J.C.; Gutell, R.R. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. J. Mol. Biol., 2004, 344(5), 1225-1249.
[96]
Staple, D.W.; Butcher, S.E. Pseudoknots: RNA structures with diverse functions. PLoS Biol., 2005, 3(6), e213.
[97]
Clote, P.; Ferre, F.; Kranakis, E.; Krizanc, D. Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 2005, 11(5), 578-591.
[98]
Yoon, B-J.; Vaidyanathan, P. In RNA secondary structure
prediction using context-sensitive hidden Markov models, Biomedical Circuits and Systems, 2004 IEEE International
Workshop on, IEEE: 2004; pp. S2/7/INV-S2/7/1-4.
[99]
Fang, X-Y.; Luo, Z-G.; Wang, Z-H. Predicting RNA secondary structure using profile stochastic context-free grammars and phylogenic analysis. J. Comput. Sci. Technol., 2008, 23(4), 582-589.
[100]
Griffiths-Jones, S.; Moxon, S.; Marshall, M.; Khanna, A.; Eddy, S.R.; Bateman, A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res., 2005, 33, 121-124.
[101]
Tran, T.T.; Zhou, F.; Marshburn, S.; Stead, M.; Kushner, S.R.; Xu, Y. De novo computational prediction of non-coding RNA genes in prokaryotic genomes. Bioinform, 2009, 25(22), 2897-2905.
[102]
Tong, H.; Guo, F.-B.; Ye, Y.-N. Automatic prediction of non-coding RNA genes in prokaryotes based on compositional statistics, 2011.
[103]
Lowe, T.M.; Eddy, S.R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res., 1997, 25(5), 955-964.
[104]
Hofacker, I.L. RNA secondary structure analysis using the Vienna RNA package. Curr. Protoc. Bioinformatics, 2009, 26(1), 12-2.
[105]
Ding, Y.; Chan, C.Y.; Lawrence, C.E. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res., 2004, 32, 135-141.
[106]
Will, S.; Yu, M.; Berger, B. Structure-based whole-genome realignment reveals many novel noncoding RNAs. Genome Res., 2013, 23(6), 1018-1027.
[107]
Vob, B. Structural analysis of aligned RNAs. Nucleic Acids Res., 2006, 34(19), 5471-5481.
[108]
Washietl, S. Prediction of structural non-coding RNAs by comparative sequence analysis na: ., 2005.
[109]
Pedersen, J.S.; Bejerano, G.; Siepel, A.; Rosenbloom, K.; Lindblad-Toh, K.; Lander, E.S.; Kent, J.; Miller, W.; Haussler, D. Identification and classification of conserved RNA secondary structures in the human genome. PLOS Comput. Biol., 2006, 2(4), e33.
[110]
Sadeghi, B.; Ahmadi, H. Azimzadeh- Jamalkandi, S.; Nassiri, M.; Masoudi-Nejad, A. BosFinder: a novell pre-microRNA gene prediction algorithm in Bos taurus. Anim. Genet., 2014, 45(4), 479-484.
[111]
Terai, G.; Komori, T.; Asai, K.; Kin, T. miRRim: a novel system to find conserved miRNAs with high sensitivity and specificity. RNA, 2007, 13(12), 2081-2090.
[112]
Fan, X-N.; Zhang, S-W. lncRNA-MFDL: identification of human long non-coding RNAs by fusing multiple features and using deep learning. Mol. Biosyst., 2015, 11(3), 892-897.
[113]
He, S.; Zhang, H.; Liu, H.; Zhu, H. LongTarget: a tool to predict lncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinform, 2015, 31(2), 178-186.
[114]
Wu, J.; Liu, Q.; Wang, X.; Zheng, J.; Wang, T.; You, M.; Sun, S. Z.; Shi, Q. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol., 2013, 10(7), 1087-1092.
[115]
Pantano, L.; Estivill, X.; Martí, E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res., 2010, 38(5), e34-e34.
[116]
Kruger, J.; Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res., 2006, 34, 451-454.
[117]
Liao, Q.; Xiao, H.; Bu, D.; Xie, C.; Miao, R.; Luo, H.; Zhao, G.; Yu, K.; Zhao, H.; Skogerbo, G. ncFANs: a web server for functional annotation of long non-coding RNAs. Nucleic Acids Res., 2011, 39, 118-124.
[118]
Herbig, A.; Nieselt, K. nocoRNAc: characterization of non-coding RNAs in prokaryotes. BMC Bioinformatics, 2011, 12(1), 40.
[119]
Ritchie, W.; Théodule, F-X.; Gautheret, D. Mireval: a web tool for simple microRNA prediction in genome sequences. Bioinform., 2008, 24(11), 1394-1396.
[120]
Huang, P.-J.; Liu, Y.-C.; Lee, C.-C.; Lin, W.-C.; Gan, R.R.-C.; Lyu, P.-C.; Tang, P. DSAP: deep-sequencing small RNA analysis
pipeline Nucleic. Acids. Res., 2010, 38(suppl_2), W385-91.
[121]
Gupta, V.; Markmann, K.; Pedersen, C.N.; Stougaard, J.; Andersen, S.U. shortran: a pipeline for small RNA-seq data analysis. Bioinform, 2012, 28(20), 2698-2700.
[122]
An, J.; Lai, J.; Lehman, M.L.; Nelson, C.C. miRDeep: An integrated application tool for miRNA identification from RNA sequencing data. Nucleic Acids Res., 2013, 41(2), 727-737.
[123]
Chen, L.; Liu, Y-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol., 2014, 65, 579-606.
[124]
Liu, X.; Hao, L.; Li, D.; Zhu, L.; Hu, S. Long non-coding RNAs and their biological roles in plants. Genomics Proteomics Bioinformatics, 2015, 13(3), 137-147.
[125]
Chekanova, J.A. Long non-coding RNAs and their functions in plants. Curr. Opin. Plant Biol., 2015, 27, 207-216.
[126]
Peschansky, V.J.; Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics, 2014, 9(1), 3-12.
[127]
Jöchl, C.; Rederstorff, M.; Hertel, J.; Stadler, P.F.; Hofacker, I.L.; Schrettl, M.; Haas, H.; Hüttenhofer, A. Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res., 2008, 36(8), 2677-2689.
[128]
Yamaguchi, A.; Abe, M. Regulation of reproductive development by non-coding RNA in Arabidopsis: to flower or not to flower. J. Plant Res., 2012, 125(6), 693-704.