[1]
Neil, K.M.; Rickman, L.S.; Lazarus, A.A. Pulmonary manifestations of leptospirosis. Rev. Infect. Dis., 1991, 13, 705-709.
[2]
Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N.; Gilman, R.H.; Willig, M.R.; Gotuzzo, E. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis., 2003, 3, 757-771.
[3]
Gupta, R.A.; Gupta, A.K.; Soni, L.K.; Kaskhedikar, S. Rationalization of physicochemical characters of oxazolyl thiosemicarbazone analogs towards multi-drug resistant tuberculosis: A QSAR approach. Eur. J. Med. Chem., 2007, 42, 1109-1116.
[4]
Sivakumar, P.M.; Geethababu, S.K.; Doble, M. Impact of topological and electronic descriptors in the QSAR of pyrazine containing thiazolines and thiazolidinones as antitubercular and antibacterial agents. Chem. Biol. Drug Des., 2008, 71, 447-463.
[5]
Vicente, E.; Perez-Silanes, S.; Lima, L.M.; Ancizu, S.; Burguete, A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem., 2009, 17, 385-389.
[6]
Lee, J.S.; Waring, M.J. Interaction between synthetic analogues of quinoxaline antibiotics and nucleic acids. Changes in mechanism and specificity related to structural alterations. Biochem. J., 1978, 173, 129-144.
[7]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45, 5604-5606.
[8]
Sharma, M.; Sahu, N.; Kohli, D.; Chaturvedi, S.; Sharma, S. Synthesis, characterization and biological activities of some 1-(nicotinylamino)-2 substituted azetidine-4-ones as potential antibacterial agents. Dig. J. Nanomater. Biostruct., 2009, 4, 361-367.
[9]
Jarrahpour, A.; Zarei, M. Synthesis of novel N-sulfonyl monocyclic β-lactams as potential antibacterial agents. Molecules, 2006, 11, 49-58.
[10]
Vijayakumar, M.M.J.; Nagaraja, T.; Shameer, H.; Jayachandran, E.; Sreenivasa, G. N-Substituted-3-chloro-2-azetidinones: Synthesis and characterization of new novel anti-inflammatory agents. J. Pharm. Sci., 2009, 1, 83-92.
[11]
Verma, A.; Saraf, S.K. 4-Thiazolidinone-a biologically active scaffold. Eur. J. Med. Chem., 2008, 43, 897-905.
[12]
Puratchikody, A.; Natarajan, R.; Jayapal, M.; Doble, M. Synthesis, in vitro antitubercular activity and 3D‐QSAR of novel quinoxaline derivatives. Chem. Biol. Drug Des., 2011, 78, 988-998.
[13]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20, 269-276.
[14]
Sivakumar, P.M.; Iyer, G.; Doble, M. QSAR studies on substituted 3-or 4-phenyl-1, 8-naphthyridine derivatives as antimicrobial agents. Med. Sci. Res., 2011, 21, 788-7958.
[15]
Baumann, K. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J. Chem. Inf. Comput. Sci., 2002, 42, 26-35.
[16]
Goffin, C.; Ghuysen, J.M. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: Presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev., 2002, 66, 702-738.
[17]
Sanna, P.; Carta, A.; Nikookar, M.E.R. Synthesis and antitubercular activity of 3-aryl substituted-2-(1H (2H) benzotriazol-1 (2)-yl) acrylonitriles. Eur. J. Med. Chem., 2000, 35, 535-543.
[18]
Hall, L.H.; Kier, L.B. Issues in representation of molecular structure: The development of molecular connectivity. J. Mol. Graph. Model., 2001, 20, 4-18.
[19]
Gough, J.D.; Lowell, H. Modeling antileukemic activity of carboquinones with electrotopological state and chi indices. J. Chem. Inf. Comput. Sci., 1999, 39, 356-361.
[20]
Shalit, I.; Barnea, A.; Shahar, A. Efficacy of ciprofloxacin against Leptospira interrogans serogroup icterohaemorrhagiae. Antimicrob. Agents Chemother., 1989, 33, 788-789.
[21]
Bal, A.M. Use of ciprofloxacin for treating leptospirosis–need for clinical trials. J. Med. Microbiol., 2005, 54, 907-907.
[22]
Ravichandran, V.; Harish, R.; Abhishek, J.; Shalini, S.; Christapher, P. Varghese.; Ram, K.A. Validation of QSAR models - strategies and importance. Int. J. Drug Discov., 2011, 3(2), 511-519.
[23]
Sharma, M.C.; Smita, S. 2D QSAR study of 7-methyljuglone derivatives: An approach to design anti tubercular agents. J. Pharm. Toxico., 2011, 6, 493-504.
[24]
Kunal, R.; Asim, S.M. Development of linear and nonlinear predictive QSAR models and their external validation using molecular molecular similarity principle for anti-HIV indolyl aryl sulfones. J. Enzyme Inhib. Med. Chem., 2008, 23 6, 980-995