[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2015, 65(1), 5-29.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2017, 67(1), 7-30.
[3]
Tazhibi, M.; Feizi, A. Awareness levels about breast cancer risk factors, early warning signs, and screening and therapeutic approaches among Iranian adult women: A large population based study using latent class analysis. BioMed Res. Int., 2014, 2014, 1-9.
[4]
Downs-Holmes, C.; Silverman, P. Breast cancer: Overview and updates. Nurse Pract., 2011, 36(12), 20-26.
[5]
Khokhar, A. Breast cancer in India: Where do we stand and where do we go. Asian Pac. J. Cancer Prev., 2012, 13(10), 4861-4866.
[7]
Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. Lancet, 2011, 378(9793), 771-784.
[8]
Hudis, C.A. Trastuzumab-mechanism of action and use in clinical practice. N. Engl. J. Med., 2007, 357, 39-51.
[9]
Palmieri, C.; Patten, D.K.; Januszewski, A.; Zucchini, G.; Howell, S.J. Breast cancer: Current and future endocrine therapies. Mol. Cell. Endocrinol., 2014, 382(1), 695-723.
[10]
Gobbi, S.; Rampa, A.; Belluti, F.; Bisi, A. Antitumor alalkylphospholipids alter cell lipid metabolism. Anticancer. Agents Med. Chem., 2014, 14, 545-558.
[11]
Favia, A.D.; Nicolotti, O.; Stefanachi, A.; Leonetti, F.; Carotti, A. Computational methods for the design of potent aromatase inhibitors. Expert Opin. Drug Discov., 2013, 8(4), 395-409.
[12]
Hiscox, S.; Davies, E.L.; Barrett-Lee, P. Aromatase inhibitors in breast cancer. Maturitas, 2009, 63(4), 275-279.
[13]
To, S.Q.; Knower, K.C.; Cheunga, V.; Simpson, E.R.; Clynea, C.D. Transcriptional control of local estrogen formation by aromatase in the breast. J. Steroid Biochem. Mol. Biol., 2015, 145, 179-186.
[14]
Simpson, E.R.; Zhao, Y.; Agarwal, V.R.; Michael, M.D.; Bulun, S.E.; Hinshelwood, M.M.; Graham-Lorence, S.; Sun, T.; Fisher, C.R.; Qin, K.; Mendelson, C.R. Aromatase expression in health and disease. Recent Prog. Horm. Res., 1997, 52, 185-213.
[15]
Thompson, E.A.; Siiteri, P.K. Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J. Biol. Chem., 1974, 249(17), 5364-5372.
[16]
Chen, S.A.; Besman, M.J.; Sparkes, R.S.; Zollman, S.; Klisak, I.; Mohandas, T.; Hall, P.F.; Shively, J.E. Human aromatase: cDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15. DNA, 1988, 7(1), 27-38.
[17]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. X-ray structure of human aromatase reveals an androgen-specific active site. J. Steroid Biochem. Mol. Biol., 2010, 118(4-5), 197-202.
[18]
Simpson, E.R.; Clyne, C.; Rubin, G.; Boon, W.C.; Robertson, K.; Britt, K.; Speed, C.; Jones, M. Aromatase-a brief overview. Annu. Rev. Physiol., 2002, 64, 93-127.
[19]
Osawa, Y.; Shibata, K.; Rohrer, D.; Weeks, C.; Duax, W.L. Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereo mechanism of estrogen biosynthesis. J. Am. Chem. Soc., 1975, 1975(97), 4400-4402.
[20]
Murthy, N.; Rao, A.R.; Sastry, G.N. Aromatase inhibitors: A new paradigm in breast cancer treatment. Curr. Med. Chem. Anticancer Agents, 2004, 4, 523-534.
[21]
Wong, S.; Chen, J. The development, application and limitations of breast cancer cell lines to study tamoxifen and aromatase inhibitor resistance. J. Steroid Biochem. Mol. Biol., 2012, 131(3-5), 83-92.
[22]
Brueggemeier, R.W. Update on the use of aromatase inhibitors in breast cancer. Expert Opin. Pharmacother., 2006, 7(14), 1919-1930.
[23]
Dutta, U.; Pant, K. Understanding and management of male breast cancer: A critical review. Med. Oncol., 2008, 25, 294-298.
[24]
Seralini, G.; Moslemi, S. Aromatase inhibitors: Past, present and future. Mol. Cell. Endocrinol., 2001, 178, 117-131.
[25]
Cepa, M.; Tavares-da-Silva, E.; Correia-da-Silva, G.; Roleira, F.; Teixeira, N.A. Synthesis and biochemical studies of 17-substituted androst-3-enes and 3,4-epoxyandrostanes as aromatase inhibitors. Steroids, 2008, 73(14), 1409-1415.
[26]
Verma, S.K.; Thareja, S. Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors. PLoS One, 2017, 12, e0175318.
[27]
Varela, C.L.; Amaral, C.; Tavares da Silva, E.; Lopes, A.; Correia-da-Silva, G.; Carvalho, R.A.; Costa, S.C.P.; Roleira, F.M.F.; Teixeira, N. Exemestane metabolites: Synthesis, stereochemical elucidation, biochemical activity and anti-proliferative effects in a hormone dependent breast cancer cell line. Eur. J. Med. Chem., 2014, 87, 336-345.
[28]
Yadav, M.R.; Sabale, P.M.; Giridhar, R.; Zimmer, C.; Hartmann, R.W. Steroidal carbonitriles as potential aromatase inhibitors. Steroids, 2012, 77, 850-857.
[29]
Bansal, R.; Guleria, S.; Thota, S.; Bodhankar, S.L.; Patwardhan, M.R.; Zimmer, C.; Hartmann, R.W.; Harvey, A.L. Design, synthesis and evaluation of novel 16-imidazolyl substituted steroidal derivatives possessing potent diversified pharmacological properties. Steroids, 2012, 77(6), 621-629.
[30]
Amaral, C.; Varelac, C.; Azevedoa, M.; Tavares da Silva, E.; Roleirac, F.M.F.; Chend, S.; Correia-da-Silvaa, G.; Teixeiraa, N. Effects of steroidal aromatase inhibitors on sensitive and resistant breast cancer cells: Aromatase inhibition and autophagy. J. Steroid Biochem. Mol. Biol., 2013, 135, 51-59.
[31]
Bansal, R.; Thota, S.; Karkra, N.; Minu, M.; Zimmer, C.; Hartmann, R.W. Synthesis, Aromatase inhibitory activity of some new 16E-arylidenosteroids. Bioorg. Chem., 2012, 45, 3636-3640.
[32]
Varela, C.L.; Amaral, C.; Correia-da-Silva, G.; Carvalho, R.A.; Teixeira, N.A.; Costa, S.C.; Roleira, F.M.F.; Tavares-da-Silva, E.J. Design, synthesis and biochemical studies of new 7α-allylandrostanes as aromatase inhibitors. Steroids, 2013, 78(7), 662-669.
[33]
Verma, S.K.; Thareja, S. Molecular docking assisted 3D-QSAR study of benzylidene-2, 4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of Type-2 diabetes mellitus. RSC Advances, 2016, 6, 33857-33867.
[34]
Verma, S.K.; Rajpoot, T.; Gautam, M.K.; Jain, A.K.; Thareja, S. Design of novel biphenyl-2-thioxothiazolidin-4-one derivatives as potential protein tyrosine phosphatase (PTP)-1B inhibitors using molecular docking study. Lett. Drug Des. Discov., 2016, 13(4), 295-300.
[36]
Verma, S.K.; Sharma, S.K.; Thareja, S. Docking study of novel pyrrolidine derivatives as potential dipeptidyl peptidase-IV (DPP-IV) inhibitors. Lett. Drug Des. Discov., 2015, 12, 284-291.
[37]
Verma, S.K.; Thareja, S. Formylchromone derivatives as novel and selective PTP-1B inhibitors: A drug design aspect using molecular docking-based self-organizing molecular field analysis. Med. Chem. Res., 2016, 25(7), 1433-1467.
[38]
Robinson, D.D.; Winn, P.J.; Lyne, P.D.; Richards, W.G. Self-organizing molecular field analysis: A tool for structure-activity studies. J. Med. Chem., 1999, 42(4), 573-583.
[39]
Thareja, S.; Verma, S.K.; Haksar, D.; Bhardwaj, T.R.; Kumar, M. Discovery of novel cinnamylidene-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type 2 diabetes. RSC Advances, 2016, 6(110), 108928-108940.
[40]
Thareja, S.; Rajpoot, T.; Verma, S.K. Generation of comparative pharmacophoric model for steroidal 5α-reductase I and II inhibitors: A 3D-QSAR study on 6-azasteroids. Steroids, 2015, 95, 96-103.
[41]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457(7226), 219-223.
[42]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.