[1]
Christopher JB, Shanta JP, Peter MJ. Diabetes Mellitus: A potential target for stem cell therapy. Curr Stem Cell Res Ther 2006; 1(2): 255-66.
[2]
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103(2): 137-49.
[3]
Giri T, Alexander A, Agrawal M, Saraf S. Current status of stem cell therapies in tissue repair and regeneration. Curr Stem Cell Res Ther 2018.
[4]
Shuyu Ng C, Toh MP, Ko Y, Yu-Chia Lee J. Direct medical cost of type 2 diabetes in singapore. PLoS One 2015; 10(3): e0122795.
[5]
Yue J, Mao X, Xu K, et al. Prevalence, Awareness, Treatment and Control of Diabetes Mellitus in a Chinese Population. PLoS One 2016; 11(4): e0153791.
[6]
Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England) 2016; 387(10027): 1513-30.
[7]
Leyla Turker S, Isil A. Challenge of mesenchymal stem cells against diabetic foot ulcer. Curr Stem Cell Res Ther 2015; 10(6): 530-4.
[8]
Ramachandran A, Snehalatha C, Shetty AS, Nanditha A. Trends in prevalence of diabetes in Asian countries. World J Diabetes 2012; 3(6): 110-7.
[9]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[10]
Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 2014; 11(11): 1185-200.
[11]
Muhammad Shareef M, Muhammad Q, Muhammad Umar A. Translating the potential of stem cells for diabetes mellitus: Challenges and opportunities. Curr Stem Cell Res Ther 2017; 12(8): 611-23.
[12]
Lozito TP, Tuan RS. Lizard tail regeneration as an instructive model of enhanced healing capabilities in an adult amniote. Connect Tissue Res 2017; 58(2): 145-54.
[13]
Christ GJ, Saul JM, Furth ME, Andersson KE. The pharmacology of regenerative medicine. Pharmacol Rev 2013; 65(3): 1091-133.
[14]
Albiero M, Avogaro A, Fadini GP. Restoring stem cell mobilization to promote vascular repair in diabetes. Vascul Pharmacol 2013; 58(4): 253-8.
[15]
Kumar R, Sharma A, Pattnaik AK, Varadwaj PK. Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med 2010; 1(1): 43-52.
[16]
Alexander A, Saraf S, Agrawal M, Patel R, Agrawal P, Khan J. Amalgamation of stem cells with nanotechnology: A unique therapeutic approach. Curr Stem Cell Res Ther 2018. [Epub ahead of print].
[17]
Biancamaria L, Franco M. Stem Cell-Based Immunomodulation in Type 1 Diabetes: Beyond the regenerative approach. Curr Pharm Des 2011; 17(29): 3229-42.
[18]
Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl Med 2013; 2(5): 328-36.
[19]
Anandwardhan AH, Justin GL, Kuldip SS, Emily C, Bernard ET. Stem-cell therapy for diabetes cure: How close are we? Curr Stem Cell Res Ther 2006; 1(3): 425-36.
[20]
Condic ML. Totipotency: What it is and what it is not. Stem Cells Dev 2014; 23(8): 796-812.
[21]
de Kretser D. Totipotent, pluripotent or unipotent stem cells: A complex regulatory enigma and fascinating biology. J Law Med 2007; 15(2): 212-8.
[22]
Giri TK, Verma S, Alexander A, Badwaik H, Tripathy M, Tripathi DK. Crosslinked biodegradable alginate hydrogel floating beads for stomach site specific controlled delivery of metronidazole. Farmacia 2013; 61(3): 533-50.
[23]
Polejaeva I, Mitalipov S. Stem cell potency and the ability to contribute to chimeric organisms. Reproduction (Cambridge, England) 2013; 145(3): R81-8.
[24]
Balboa D, Otonkoski T. Human pluripotent stem cell based islet models for diabetes research. Best Pract Res Clin Endocrinol Metab 2015; 29(6): 899-909.
[25]
Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P. Pluripotent stem cells as a potential tool for disease modelling and cell therapy in diabetes. Stem Cell Rev 2014; 10(3): 327-37.
[26]
Mitalipov S, Wolf D. Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 2009; 114: 185-99.
[27]
Suad A, Patrick RJF, Ernst W. Advances in reprogramming to pluripotency. Curr Stem Cell Res Ther 2015; 10(3): 193-207.
[28]
Laura F, Anna CB. Stem cell technologies based on hemangioblast technology focusing on human blood cells. Recent Pat Drug Deliv Formul 2013; 7(1): 4-8.
[29]
Seale P, Asakura A, Rudnicki MA. The potential of muscle stem cells. Dev Cell 2001; 1(3): 333-42.
[30]
Seita J, Weissman IL. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010; 2(6): 640-53.
[31]
Bruin JE, Saber N, Braun N, et al. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Reports 2015; 4(4): 605-20.
[32]
Agrawal M, Alexander A, Khan J, et al. Recent biomedical applications on stem cell therapy: A brief overview. Curr Stem Cell Res The 2018.
[33]
Ozawa M, Sakatani M, Yao J, et al. Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Dev Biol 2012; 12: 33.
[34]
Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: A review. Restor Neurol Neurosci 2010; 28(4): 589-603.
[35]
Hebrok M. Generating beta cells from stem cells-the story so far. Cold Spring Harb Perspect Med 2012; 2(6): a007674.
[36]
da Silva CL, Goncalves R, Porada CD, et al. Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics. J Cell Physiol 2009; 220(1): 102-11.
[37]
Ballard VL. Stem cells for heart failure in the aging heart. Heart Fail Rev 2010; 15(5): 447-56.
[38]
Zhou C, Grottkau BE, Zou S. Regulators of stem cells proliferation in tissue regeneration. Curr Stem Cell Rep 2016; 11(3): 177-87.
[39]
Visvader JE, Clevers H. Tissue-specific designs of stem cell hierarchies. Nat Cell Biol 2016; 18(4): 349-55.
[40]
Brack AS, Rando TA. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell. Cell Stem Cell 2012; 10(5): 504-14.
[41]
Saraf S, Gupta A, Alexander A, Khan J, Jangde M, Saraf S. Advancements and avenues in nanophytomedicines for better pharmacological responses. J Nanosci Nanotechnol 2015; 15(6): 4070-9.
[42]
Viswanathan C, Kulkarni R, Bopardikar A, Ramdasi S. Significance of CD34 negative hematopoietic stem cells and cd34 positive mesenchymal stem cells - a valuable dimension to the current understanding. Curr Stem Cell Rep 2017; 12(6): 476-83.
[43]
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21(43): 12334-50.
[44]
Bergstrom T, Forsberg-Nilsson K. Neural stem cells: brain building blocks and beyond. Ups J Med Sci 2012; 117(2): 132-42.
[45]
Li Z, Leung M, Hopper R, Ellenbogen R, Zhang M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 2010; 31(3): 404-12.
[46]
Ji L, Liu YX, Yang C, et al. Self-renewal and pluripotency is maintained in human embryonic stem cells by co-culture with human fetal liver stromal cells expressing hypoxia inducible factor 1alpha. J Cell Physiol 2009; 221(1): 54-66.
[47]
Loeser RF. Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med 2010; 26(3): 371-86.
[48]
Joseph R, Srivastava OP, Pfister RR. Modeling keratoconus using induced pluripotent stem cells. Invest Ophthalmol Vis Sci 2016; 57(8): 3685-97.
[49]
Sun C, Wilson GS, Fan JG, Qiao L. Potential applications of induced pluripotent stem cells (iPSCs) in hepatology research. Curr Stem Cell Res Ther 2015; 10(3): 208-15.
[50]
Soejitno A, Prayudi PK. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2011; 2(5): 197-210.
[51]
Mortada I, Bilani N. Advances in the production and application of induced pluripotent stem cells. Curr Stem Cell Res Ther 2017; 12(8): 637-43.
[52]
Pal R, Mariappan I, Velayudhan SR. Editorial: Induced pluripotent stem cell-derived mesenchymal stem cells: ushering of a new era in personalized cell therapies. Curr Stem Cell Res Ther 2016; 11(2): 97-8.
[53]
Hosokawa Y, Toyoda T, Fukui K, et al. Insulin-producing cells derived from ‘induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosis-related genes. J Diabetes Investig 2017. [Epub ahead of print].
[54]
Stepniewski J, Kachamakova-Trojanowska N, Ogrocki D, et al. Induced pluripotent stem cells as a model for diabetes investigation. Sci Rep 2015; 5: 8597.
[55]
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526: 55.
[56]
Lee KO, Gan SU, Calne RY. Stem cell therapy for diabetes. Indian J Endocrinol Metab 2012; 16(Suppl. 2): S227-9.
[57]
Shruti D. Extrinsic factors promoting insulin producing cell-differentiation and insulin expression enhancement-hope for diabetics. Curr Stem Cell Res Ther 2013; 8(6): 471-83.
[58]
Song Cheol K, Duck Jong H, Ji Yeon L. Adipose Tissue Derived Stem Cells for Regeneration and Differentiation into Insulin-Producing Cells. Curr Stem Cell Res Ther 2010; 5(2): 190-4.
[59]
Carlos Eduardo Barra C, Julio Cesar V. Stem Cell-Based therapies and immunomodulatory approaches in newly diagnosed type 1 diabetes. Curr Stem Cell Res Ther 2011; 6(1): 10-5.
[60]
Kim SC, Han DJ, Lee JY. Adipose tissue derived stem cells for regeneration and differentiation into insulin-producing cells. Curr Stem Cell Res Ther 2010; 5(2): 190-4.
[61]
El-Demerdash RF, Hammad LN, Kamal MM, El Mesallamy HO. A comparison of Wharton’s jelly and cord blood as a source of mesenchymal stem cells for diabetes cell therapy. Regen Med 2015; 10(7): 841-55.
[62]
Ke Y, Shane F, Xiangwei X. Beta cell regeneration in adult mice: Controversy over the involvement of stem cells. Curr Stem Cell Res Ther 2016; 11(7): 542-6.
[63]
Aaron CT, Utpal S, Paras KM. Synergy of microRNA and stem cell: A novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Curr Diabetes Rev 2011; 7(6): 367-76.
[64]
Samuel AL, Joia S, Josef K. Hematopoietic stem cell transplantation for the treatment of autoimmunity in type 1 diabetes. Curr Stem Cell Res Ther 2011; 6(1): 29-37.
[65]
Bruin JESN, Braun N, Fox JK, Mojibian M, Asadi A. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Reports 2015; 4(4): 605-20.
[66]
Li M, Li H, Ruan Y, Wang T, Liu J. Stem cell therapy for diabetic erectile dysfunction in rats: A meta-analysis. PLoS One 2016; 11(4): e0154341.
[67]
Shukla P, Singh A, Gawri S, Alexander A, Sonwane S. In vitro propagation of Barleria prionitis Linn and its antibacterial activity. IJPPR 2011; 2(1): 170-2.
[68]
Rezania A, Bruin JE, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 2014; 32(11): 1121-33.
[69]
Scoville DW, Jetten AM. Studying pancreas development and diabetes using human pluripotent stem cells. Stem Cell Investig 2016; 3: 80.
[70]
Alluru SR, Kishore K, Norman E. Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 2010; 5(4): 356-61.
[71]
Villani V, Milanesi A, Sedrakyan S, et al. Amniotic fluid stem cells prevent beta-cell injury. Cytotherapy 2014; 16(1): 41-55.
[72]
Bhartiya D. Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles. Indian J Med Res 2016; 143(3): 267-74.
[73]
Zhao Y, Jiang Z, Zhao T, et al. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: Phase I/II clinical trial. BMC Med 2013; 11: 160.
[74]
Weiskopf K, Schnorr PJ, Pang WW, et al. Myeloid cell origins, differentiation, and clinical implications. Microbiol Spectr 2016; 4(5)
[75]
Vrtovec B, Sever M, Jensterle M, et al. Efficacy of CD34+ stem cell therapy in nonischemic dilated cardiomyopathy is absent in patients with diabetes but preserved in patients with insulin resistance. Stem Cells Transl Med 2016; 5(5): 632-8.
[76]
Bervar M, Kozelj M, Poglajen G, et al. Effects of transendocardial CD34(+) cell transplantation on diastolic parameters in patients with nonischemic dilated cardiomyopathy. Stem Cells Transl Med 2017; 6(6): 1515-21.
[77]
Fadini GP, Fiala M, Cappellari R, et al. Diabetes limits stem cell mobilization following G-CSF but not plerixafor. Diabetes 2015; 64(8): 2969-77.
[78]
Delgado E, Perez-Basterrechea M, Suarez-Alvarez B, et al. Modulation of autoimmune T-cell memory by stem cell educator therapy: Phase 1/2 clinical trial. EBioMedicine 2015; 2(12): 2024-36.
[79]
Schulz TC. Concise Review: Manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cells Transl Med 2015; 4(8): 927-31.
[80]
Trounson A, McDonald C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell 2015; 17(1): 11-22.