[1]
Duckett, L. Alzheimer’s dementia: morbidity and mortality. J. Insur. Med., 2001, 33(3), 227-234. [PMID: 11558402].
[2]
Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci., 2009, 11(2), 111-128. [PMID: 19585947].
[3]
www.alzheimer-europe.org. 2008.
[4]
Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement., 2007, 3(3), 186-191. [http://dx.doi.org/10.1016/j.jalz.2007.04.381]. [PMID: 19595937].
[5]
Herrmann, N.; Chau, S.A.; Kircanski, I.; Lanctôt, K.L. Current and emerging drug treatment options for Alzheimer’s disease: a systematic review. Drugs, 2011, 71(15), 2031-2065. [http://dx.doi.org/10.2165/11595870-000000000-00000]. [PMID: 21985169].
[6]
Visser, P.J.; Vos, S.; van Rossum, I.; Scheltens, P. Comparison of International Working Group criteria and National Institute on Aging-Alzheimer’s Association criteria for Alzheimer’s disease. Alzheimers Dement., 2012, 8(6), 560-563. [http://dx.doi.org/10.1016/j.jalz.2011.10.008]. [PMID: 23102126].
[7]
Bertens, D.; Knol, D.L.; Scheltens, P.; Visser, P.J. Temporal evolution of biomarkers and cognitive markers in the asymptomatic, MCI, and dementia stage of Alzheimer’s disease. Alzheimers Dement., 2015, 11(5), 511-522. [http://dx.doi.org/10.1016/j.jalz.2014.05.1754]. [PMID: 25150730].
[8]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279. [http://dx.doi.org/10.1016/j.jalz.2011.03.008]. [PMID: 21514249].
[9]
McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; Mohs, R.C.; Morris, J.C.; Rossor, M.N.; Scheltens, P.; Carrillo, M.C.; Thies, B.; Weintraub, S.; Phelps, C.H. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 263-269. [http://dx.doi.org/10.1016/j.jalz.2011.03.005]. [PMID: 21514250].
[10]
Hughes, C.P.; Berg, L.; Danziger, W.L.; Coben, L.A.; Martin, R.L. A new clinical scale for the staging of dementia. Br. J. Psychiatry, 1982, 140, 566-572. [http://dx.doi.org/10.1192/bjp.140.6.566]. [PMID: 7104545].
[11]
Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry, 1982, 139(9), 1136-1139. [http://dx.doi.org/10.1176/ajp.139.9.1136]. [PMID: 7114305].
[12]
Moretti, D.V. Mild cognitive impairment: structural, metabolical, and neurophysiological evidence of a novel EEG biomarker. Front. Neurol., 2015, 6, 152. [http://dx.doi.org/10.3389/fneur.2015.00152]. [PMID: 26217299].
[13]
Lista, S.; O’Bryant, S.E.; Blennow, K.; Dubois, B.; Hugon, J.; Zetterberg, H.; Hampel, H. Biomarkers in Sporadic and Familial Alzheimer’s Disease. J. Alzheimers Dis., 2015, 47(2), 291-317. [http://dx.doi.org/10.3233/JAD-143006]. [PMID: 26401553].
[14]
Terry, R.D. Cell death or synaptic loss in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2000, 59(12), 1118-1119. [http://dx.doi.org/10.1093/jnen/59.12.1118]. [PMID: 11138931].
[15]
Mohamed, A.; Cortez, L.; de Chaves, E.P. Aggregation state and neurotoxic properties of alzheimer β-amyloid peptide. Curr. Protein Pept. Sci., 2011, 12(3), 235-257. [http://dx.doi.org/10.2174/138920311795860214]. [PMID: 21348837].
[16]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70. [http://dx.doi.org/10.1111/ene.13439]. [PMID: 28872215].
[17]
Le Page, A.; Dupuis, G.; Frost, E.H.; Larbi, A.; Pawelec, G.; Witkowski, J.M.; Fulop, T. Role of the peripheral innate immune system in the development of Alzheimer's disease. Exp. Gerontol.,, 2017. S0531-5565, 30541-30547.
[18]
Pimplikar, S.W. Multi-omics and Alzheimer’s disease: a slower but surer path to an efficacious therapy? Am. J. Physiol. Cell Physiol., 2017, 313(1), C1-C2. [http://dx.doi.org/10.1152/ajpcell.00109.2017]. [PMID: 28515086].
[19]
Zetterberg, H. Applying fluid biomarkers to Alzheimer’s disease. Am. J. Physiol. Cell Physiol., 2017, 313(1), C3-C10. [http://dx.doi.org/10.1152/ajpcell.00007.2017]. [PMID: 28424166].
[20]
Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 263-269. [http://dx.doi.org/10.1038/nrm3314]. [PMID: 22436749].
[21]
Pan, X.; Nasaruddin, M.B.; Elliott, C.T.; McGuinness, B.; Passmore, A.P.; Kehoe, P.G.; Hölscher, C.; McClean, P.L.; Graham, S.F.; Green, B.D. Alzheimer’s disease-like pathology has transient effects on the brain and blood metabolome. Neurobiol. Aging, 2016, 38, 151-163. [http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.014]. [PMID: 26827653].
[22]
Wang, G.; Zhou, Y.; Huang, F.J.; Tang, H.D.; Xu, X.H.; Liu, J.J.; Wang, Y.; Deng, Y.L.; Ren, R.J.; Xu, W.; Ma, J.F.; Zhang, Y.N.; Zhao, A.H.; Chen, S.D.; Jia, W. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J. Proteome Res., 2014, 13(5), 2649-2658. [http://dx.doi.org/10.1021/pr5000895]. [PMID: 24694177].
[23]
Han, X.; Rozen, S.; Boyle, S.H.; Hellegers, C.; Cheng, H.; Burke, J.R.; Welsh-Bohmer, K.A.; Doraiswamy, P.M.; Kaddurah-Daouk, R. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One, 2011, 6(7)e21643 [http://dx.doi.org/10.1371/journal.pone.0021643]. [PMID: 21779331].
[24]
Yu, L.; Chibnik, L.B.; Srivastava, G.P.; Pochet, N.; Yang, J.; Xu, J.; Kozubek, J.; Obholzer, N.; Leurgans, S.E.; Schneider, J.A.; Meissner, A.; De Jager, P.L.; Bennett, D.A. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol., 2015, 72(1), 15-24. [http://dx.doi.org/10.1001/jamaneurol.2014.3049]. [PMID: 25365775].
[25]
Pan, Y.; Liu, R.; Terpstra, E.; Wang, Y.; Qiao, F.; Wang, J.; Tong, Y.; Pan, B. Dysregulation and diagnostic potential of microRNA in Alzheimer’s disease. J. Alzheimers Dis., 2016, 49(1), 1-12. [http://dx.doi.org/10.3233/JAD-150451]. [PMID: 26484912].
[26]
Yılmaz, Ş.G.; Erdal, M.E.; Özge, A.A.; Sungur, M.A. Can Peripheral MicroRNA Expression Data Serve as Epigenomic (Upstream) Biomarkers of Alzheimer’s Disease? OMICS, 2016, 20(8), 456-461. [http://dx.doi.org/10.1089/omi.2016.0099]. [PMID: 27501295].
[27]
Cheng, L.; Quek, C.Y.; Sun, X.; Bellingham, S.A.; Hill, A.F. The detection of microRNA associated with Alzheimer’s disease in biological fluids using next-generation sequencing technologies. Front. Genet., 2013, 4, 150. [http://dx.doi.org/10.3389/fgene.2013.00150]. [PMID: 23964286].
[28]
Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med., 2006, 12(9), 1005-1015. [PMID: 16960575].
[29]
Ray, S.; Britschgi, M.; Herbert, C.; Takeda-Uchimura, Y.; Boxer, A.; Blennow, K.; Friedman, L.F.; Galasko, D.R.; Jutel, M.; Karydas, A.; Kaye, J.A.; Leszek, J.; Miller, B.L.; Minthon, L.; Quinn, J.F.; Rabinovici, G.D.; Robinson, W.H.; Sabbagh, M.N.; So, Y.T.; Sparks, D.L.; Tabaton, M.; Tinklenberg, J.; Yesavage, J.A.; Tibshirani, R.; Wyss-Coray, T. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat. Med., 2007, 13(11), 1359-1362. [http://dx.doi.org/10.1038/nm1653]. [PMID: 17934472].
[30]
Guo, L.H.; Alexopoulos, P.; Wagenpfeil, S.; Kurz, A.; Perneczky, R. Plasma proteomics for the identification of Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2013, 27(4), 337-342. [http://dx.doi.org/10.1097/WAD.0b013e31827b60d2]. [PMID: 23314060].
[31]
Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Kokmen, E.; Tangelos, E.G. Aging, memory, and mild cognitive impairment. Int. Psychogeriatr., 1997, 9(Suppl. 1), 65-69. [http://dx.doi.org/10.1017/S1041610297004717]. [PMID: 9447429].
[32]
McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 1984, 34(7), 939-944. [http://dx.doi.org/10.1212/WNL.34.7.939]. [PMID: 6610841].
[33]
González-Domínguez, R.; Rupérez, F.J.; García-Barrera, T.; Barbas, C.; Gómez-Ariza, J.L. Metabolomic-Driven Elucidation of Serum Disturbances Associated with Alzheimer’s Disease and Mild Cognitive Impairment. Curr. Alzheimer Res., 2016, 13(6), 641-653. [http://dx.doi.org/10.2174/1567205013666160129095138]. [PMID: 26825096].
[34]
González-Domínguez, R.; García, A.; García-Barrera, T.; Barbas, C.; Gómez-Ariza, J.L. Metabolomic profiling of serum in the progression of Alzheimer’s disease by capillary electrophoresis-mass spectrometry. Electrophoresis, 2014, 35(23), 3321-3330. [http://dx.doi.org/10.1002/elps.201400196]. [PMID: 25136972].
[35]
Graham, S.F.; Chevallier, O.P.; Elliott, C.T.; Hölscher, C.; Johnston, J.; McGuinness, B.; Kehoe, P.G.; Passmore, A.P.; Green, B.D. Untargeted metabolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabolism in mild cognitive impairment subjects converting to Alzheimer’s disease. PLoS One, 2015, 10(3)e0119452 [http://dx.doi.org/10.1371/journal.pone.0119452]. [PMID: 25803028].
[36]
Mapstone, M.; Lin, F.; Nalls, M.A.; Cheema, A.K.; Singleton, A.B.; Fiandaca, M.S.; Federoff, H.J. What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiol. Aging, 2017, 51, 148-155. [http://dx.doi.org/10.1016/j.neurobiolaging.2016.11.007]. [PMID: 27939698].
[37]
de Leeuw, F.A.; Peeters, C.F.W.; Kester, M.I.; Harms, A.C.; Struys, E.A.; Hankemeier, T.; van Vlijmen, H.W.T.; van der Lee, S.J.; van Duijn, C.M.; Scheltens, P.; Demirkan, A.; van de Wiel, M.A.; van der Flier, W.M.; Teunissen, C.E. Blood-based metabolic signatures in Alzheimer’s disease. Alzheimers Dement. (Amst.), 2017, 8, 196-207. [http://dx.doi.org/10.1016/j.dadm.2017.07.006]. [PMID: 28951883].
[38]
Olazarán, J.; Gil-de-Gómez, L.; Rodríguez-Martín, A.; Valentí-Soler, M.; Frades-Payo, B.; Marín-Muñoz, J.; Antúnez, C.; Frank-García, A.; Acedo-Jiménez, C.; Morlán-Gracia, L.; Petidier-Torregrossa, R.; Guisasola, M.C.; Bermejo-Pareja, F.; Sánchez-Ferro, Á.; Pérez-Martínez, D.A.; Manzano-Palomo, S.; Farquhar, R.; Rábano, A.; Calero, M. A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(4), 1157-1173. [http://dx.doi.org/10.3233/JAD-142925]. [PMID: 25649659].
[39]
Toledo, J.B.; Arnold, M.; Kastenmüller, G.; Chang, R.; Baillie, R.A.; Han, X.; Thambisetty, M.; Tenenbaum, J.D.; Suhre, K.; Thompson, J.W.; John-Williams, L.S.; Mahmoudian, D.S.; Rotroff, D.M.; Jack, J.R.; Motsinger-Reif, A.; Risacher, S.L.; Blach, C.; Lucas, J.E.; Massaro, T.; Louie, G.; Zhu, H.; Dallmann, G.; Klavins, K.; Koal, T.; Kim, S.; Nho, K.; Shen, L.; Casanova, R.; Varma, S.; Legido-Quigley, C.; Moseley, M.A.; Zhu, K.; Henrion, M.Y.R.; van der Lee, S.J.; Harms, A.C.; Demirkan, A.; Hankemeier, T.
van Duijn, C.M.; Trojanowski, J.Q.; Shaw, L.M.; Saykin, A.J.; Weiner, M.W.; Doraiswamy, P.M.; Kaddurah-Daouk, R. Metabolic network failures in Alzheimer’s disease: A biochemical road map. Alzheimers Dement., 2017, 13(9), 965-984. [http://dx.doi.org/10.1016/j.jalz.2017.01.020]. [PMID: 28341160].
[40]
Chouraki, V.; Preis, S.R.; Yang, Q.; Beiser, A.; Li, S.; Larson, M.G.; Weinstein, G.; Wang, T.J.; Gerszten, R.E.; Vasan, R.S.; Seshadri, S. Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham Study. Alzheimers Dement., 2017, 13(12), 1327-1336. [http://dx.doi.org/10.1016/j.jalz.2017.04.009]. [PMID: 28602601].
[41]
Orešič, M.; Anderson, G.; Mattila, I.; Manoucheri, M.; Soininen, H.; Hyötyläinen, T.; Basignani, C. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer’s Disease, Normal Pressure Hydrocephalus and Brain Tumor. Front. Neurosci., 2018, 11, 747. [http://dx.doi.org/10.3389/fnins.2017.00747]. [PMID: 29375291].
[42]
Oberacher, H.; Arnhard, K.; Linhart, C.; Diwo, A.; Marksteiner, J.; Humpel, C. Targeted Metabolomic Analysis of Soluble Lysates from Platelets of Patients with Mild Cognitive Impairment and Alzheimer’s Disease Compared to Healthy Controls: Is PC aeC40:4 a Promising Diagnostic Tool? J. Alzheimers Dis., 2017, 57(2), 493-504. [http://dx.doi.org/10.3233/JAD-160172]. [PMID: 28269764].
[43]
Liu, Y.; Li, N.; Zhou, L.; Li, Q.; Li, W. Plasma metabolic profiling of mild cognitive impairment and Alzheimer’s disease using liquid chromatography/mass spectrometry. Cent. Nerv. Syst. Agents Med. Chem., 2014, 14(2), 113-120. [http://dx.doi.org/10.2174/1871524915666141216161246]. [PMID: 25515716].
[44]
Li, D.; Misialek, J.R.; Boerwinkle, E.; Gottesman, R.F.; Sharrett, A.R.; Mosley, T.H.; Coresh, J.; Wruck, L.M.; Knopman, D.S.; Alonso, A. Plasma phospholipids and prevalence of mild cognitive impairment and/or dementia in the ARIC Neurocognitive Study (ARIC-NCS). Alzheimers Dement. (Amst.), 2016, 3, 73-82. [http://dx.doi.org/10.1016/j.dadm.2016.02.008]. [PMID: 27408938].
[45]
Whiley, L.; Sen, A.; Heaton, J.; Proitsi, P.; García-Gómez, D.; Leung, R.; Smith, N.; Thambisetty, M.; Kloszewska, I.; Mecocci, P.; Soininen, H.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Legido-Quigley, C. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol. Aging, 2014, 35(2), 271-278. [http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.001]. [PMID: 24041970].
[46]
Simpson, B.N.; Kim, M.; Chuang, Y.F.; Beason-Held, L.; Kitner-Triolo, M.; Kraut, M.; Lirette, S.T.; Windham, B.G.; Griswold, M.E.; Legido-Quigley, C.; Thambisetty, M. Blood metabolite markers of cognitive performance and brain function in aging. J. Cereb. Blood Flow Metab., 2016, 36(7), 1212-1223. [http://dx.doi.org/10.1177/0271678X15611678]. [PMID: 26661209].
[47]
Li, D.; Misialek, J.R.; Boerwinkle, E.; Gottesman, R.F.; Sharrett, A.R.; Mosley, T.H.; Coresh, J.; Wruck, L.M.; Knopman, D.S.; Alonso, A. Prospective associations of plasma phospholipids and mild cognitive impairment/dementia among African Americans in the ARIC Neurocognitive Study. Alzheimers Dement. (Amst.), 2016, 6, 1-10. [http://dx.doi.org/10.1016/j.dadm.2016.09.003]. [PMID: 28054030].
[48]
Iuliano, L.; Pacelli, A.; Ciacciarelli, M.; Zerbinati, C.; Fagioli, S.; Piras, F.; Orfei, M.D.; Bossù, P.; Pazzelli, F.; Serviddio, G.; Caltagirone, C.; Spalletta, G. Plasma fatty acid lipidomics in amnestic mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis., 2013, 36(3), 545-553. [http://dx.doi.org/10.3233/JAD-122224]. [PMID: 23635405].
[49]
Proitsi, P.; Kim, M.; Whiley, L.; Simmons, A.; Sattlecker, M.; Velayudhan, L.; Lupton, M.K.; Soininen, H.; Kloszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Powell, J.F.; Dobson, R.J.; Legido-Quigley, C. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimers Dement., 2017, 13(2), 140-151. [http://dx.doi.org/10.1016/j.jalz.2016.08.003]. [PMID: 27693183].
[50]
Proitsi, P.; Kim, M.; Whiley, L.; Pritchard, M.; Leung, R.; Soininen, H.; Kloszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Sham, P.; Lovestone, S.; Powell, J.F.; Dobson, R.J.; Legido-Quigley, C. Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl. Psychiatry, 2015. 5e494
[http://dx.doi.org/10.1038/tp.2014.127] [PMID: 25585166]
[51]
Ciavardelli, D.; Piras, F.; Consalvo, A.; Rossi, C.; Zucchelli, M.; Di Ilio, C.; Frazzini, V.; Caltagirone, C.; Spalletta, G.; Sensi, S.L. Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer’s disease subjects. Neurobiol. Aging, 2016, 43, 1-12. [http://dx.doi.org/10.1016/j.neurobiolaging.2016.03.005]. [PMID: 27255810].
[52]
Savica, R.; Murray, M.E.; Persson, X.M.; Kantarci, K.; Parisi, J.E.; Dickson, D.W.; Petersen, R.C.; Ferman, T.J.; Boeve, B.F.; Mielke, M.M. Plasma sphingolipid changes with autopsy-confirmed Lewy Body or Alzheimer’s pathology. Alzheimers Dement. (Amst.), 2016, 3, 43-50. [http://dx.doi.org/10.1016/j.dadm.2016.02.005]. [PMID: 27152320].
[53]
Klavins, K.; Koal, T.; Dallmann, G.; Marksteiner, J.; Kemmler, G.; Humpel, C. The ratio of phosphatidylcholines to lysophosphatidylcholines in plasma differentiates healthy controls from patients with Alzheimer’s disease and mild cognitive impairment. Alzheimers Dement. (Amst.), 2015, 1(3), 295-302. [http://dx.doi.org/10.1016/j.dadm.2015.05.003]. [PMID: 26744734].
[54]
Wood, P.L.; Locke, V.A.; Herling, P.; Passaro, A.; Vigna, G.B.; Volpato, S.; Valacchi, G.; Cervellati, C.; Zuliani, G. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer’s disease (LOAD). BBA Clin., 2015, 5, 25-28. [http://dx.doi.org/10.1016/j.bbacli.2015.11.004]. [PMID: 27051586].
[55]
Yilmaz, A.; Geddes, T.; Han, B.; Bahado-Singh, R.O.; Wilson, G.D.; Imam, K.; Maddens, M.; Graham, S.F. Diagnostic Biomarkers of Alzheimer’s Disease as Identified in Saliva using 1H NMR-Based Metabolomics. J. Alzheimers Dis., 2017, 58(2), 355-359. [http://dx.doi.org/10.3233/JAD-161226]. [PMID: 28453477].
[56]
Cháfer-Pericás, C.; Rahkonen, L.; Sánchez-Illana, A.; Kuligowski, J.; Torres-Cuevas, I.; Cernada, M.; Cubells, E.; Nuñez-Ramiro, A.; Andersson, S.; Vento, M.; Escobar, J. Ultra high performance liquid chromatography coupled to tandem mass spectrometry determination of lipid peroxidation biomarkers in newborn serum samples. Anal. Chim. Acta, 2015, 886, 214-220. [http://dx.doi.org/10.1016/j.aca.2015.06.028]. [PMID: 26320656].
[57]
Cháfer-Pericás, C.; Torres-Cuevas, I.; Sanchez-Illana, A.; Escobar, J.; Kuligowski, J.; Solberg, R.; Garberg, H.T.; Huun, M.U.; Saugstad, O.D.; Vento, M. Development of a reliable analytical method to determine lipid peroxidation biomarkers in newborn plasma samples. Talanta, 2016, 153, 152-157. [http://dx.doi.org/10.1016/j.talanta.2016.03.010]. [PMID: 27130102].
[58]
Escobar, J.; Sánchez-Illana, Á.; Kuligowski, J.; Torres-Cuevas, I.; Solberg, R.; Garberg, H.T.; Huun, M.U.; Saugstad, O.D.; Vento, M.; Cháfer-Pericás, C. Development of a reliable method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry to measure thiol-associated oxidative stress in whole blood samples. J. Pharm. Biomed. Anal., 2016, 123, 104-112. [http://dx.doi.org/10.1016/j.jpba.2016.02.007]. [PMID: 26895495].
[59]
García-Blanco, A.; Peña-Bautista, C.; Oger, C.; Vigor, C.; Galano, J.M.; Durand, T.; Martín-Ibáñez, N.; Baquero, M.; Vento, M.; Cháfer-Pericás, C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta, 2018, 184, 193-201. [http://dx.doi.org/10.1016/j.talanta.2018.03.002]. [PMID: 29674032].
[60]
Peña-Bautista, C.; Vigor, C.; Galano, J.M.; Oger, C.; Durand, T.; Ferrer, I.; Cuevas, A.; López-Cuevas, R.; Baquero, M.; López-Nogueroles, M.; Vento, M.; Hervás, D.; García-Blanco, A.; Cháfer-Pericás, C. Plasma lipid peroxidation biomarkers for early and non-invasive Alzheimer Disease detection. Free Radic. Biol. Med., 2018, 124, 388-394. [http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.038]. [PMID: 29969716].
[61]
García-Giménez, J.L.; Sanchis-Gomar, F.; Lippi, G.; Mena, S.; Ivars, D.; Gomez-Cabrera, M.C.; Viña, J.; Pallardó, F.V. Epigenetic biomarkers: A new perspective in laboratory diagnostics. Clin. Chim. Acta, 2012, 413(19-20), 1576-1582. [http://dx.doi.org/10.1016/j.cca.2012.05.021]. [PMID: 22664147].
[62]
Taguchi, Y.H.; Murakami, Y. Universal disease biomarker: can a fixed set of blood microRNAs diagnose multiple diseases? BMC Res. Notes, 2014, 7, 581. [http://dx.doi.org/10.1186/1756-0500-7-581]. [PMID: 25176111].
[63]
Dong, H.; Li, J.; Huang, L.; Chen, X.; Li, D.; Wang, T.; Hu, C.; Xu, J.; Zhang, C.; Zen, K.; Xiao, S.; Yan, Q.; Wang, C.; Zhang, C.Y. Serum MicroRNA Profiles Serve as Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. Dis. Markers, 2015, 2015625659 [http://dx.doi.org/10.1155/2015/625659]. [PMID: 26078483].
[64]
Satoh, J.; Kino, Y.; Niida, S. MicroRNA-Seq Data Analysis Pipeline to Identify Blood Biomarkers for Alzheimer’s Disease from Public Data. Biomark. Insights, 2015, 10, 21-31. [http://dx.doi.org/10.4137/BMI.S25132]. [PMID: 25922570].
[65]
Nagaraj, S.; Laskowska-Kaszub, K.; Dębski, K.J.; Wojsiat, J.; Dąbrowski, M.; Gabryelewicz, T.; Kuźnicki, J.; Wojda, U. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget, 2017, 8(10), 16122-16143. [http://dx.doi.org/10.18632/oncotarget.15109]. [PMID: 28179587].
[66]
Keller, A.; Backes, C.; Haas, J.; Leidinger, P.; Maetzler, W.; Deuschle, C.; Berg, D.; Ruschil, C.; Galata, V.; Ruprecht, K.; Stähler, C.; Würstle, M.; Sickert, D.; Gogol, M.; Meder, B.; Meese, E. Validating Alzheimer’s disease micro RNAs using next-generation sequencing. Alzheimers Dement., 2016, 12(5), 565-576. [http://dx.doi.org/10.1016/j.jalz.2015.12.012]. [PMID: 26806387].
[67]
Leidinger, P.; Backes, C.; Deutscher, S.; Schmitt, K.; Mueller, S.C.; Frese, K.; Haas, J.; Ruprecht, K.; Paul, F.; Stähler, C.; Lang, C.J.; Meder, B.; Bartfai, T.; Meese, E.; Keller, A. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol., 2013, 14(7), R78. [http://dx.doi.org/10.1186/gb-2013-14-7-r78]. [PMID: 23895045].
[68]
Cheng, L.; Doecke, J.D.; Sharples, R.A.; Villemagne, V.L.; Fowler, C.J.; Rembach, A.; Martins, R.N.; Rowe, C.C.; Macaulay, S.L.; Masters, C.L.; Hill, A.F. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol. Psychiatry, 2015, 20(10), 1188-1196. [http://dx.doi.org/10.1038/mp.2014.127]. [PMID: 25349172].
[69]
Satoh, J.; Kino, Y.; Niida, S. MicroRNA-Seq Data Analysis Pipeline to Identify Blood Biomarkers for Alzheimer’s Disease from Public Data. Biomark. Insights, 2015, 10, 21-31. [http://dx.doi.org/10.4137/BMI.S25132]. [PMID: 25922570].
[70]
Yang, T.T.; Liu, C.G.; Gao, S.C.; Zhang, Y.; Wang, P.C. The Serum Exosome Derived MicroRNA-135a, -193b, and -384 Were Potential Alzheimer’s Disease Biomarkers. Biomed. Environ. Sci., 2018, 31(2), 87-96. [PMID: 29606187].
[71]
Luo, Q.; Chen, Y. Long noncoding RNAs and Alzheimer’s disease. Clin. Interv. Aging, 2016, 11, 867-872. [http://dx.doi.org/10.2147/CIA.S107037]. [PMID: 27418812].
[72]
Deng, Y.; Xiao, L.; Li, W.; Tian, M.; Feng, X.; Feng, H.; Hou, D. Plasma long noncoding RNA 51A as a stable biomarker of Alzheimer’s disease. Int. J. Clin. Exp. Pathol., 2017, 10, 4694-4699.
[73]
Duits, F.H.; Brinkmalm, G.; Teunissen, C.E.; Brinkmalm, A.; Scheltens, P.; Van der Flier, W.M.; Zetterberg, H.; Blennow, K. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 5. [http://dx.doi.org/10.1186/s13195-017-0335-x]. [PMID: 29370833].
[74]
Kiddle, S.J.; Steves, C.J.; Mehta, M.; Simmons, A.; Xu, X.; Newhouse, S.; Sattlecker, M.; Ashton, N.J.; Bazenet, C.; Killick, R.; Adnan, J.; Westman, E.; Nelson, S.; Soininen, H.; Kloszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Curtis, C.; Breen, G.; Williams, S.C.; Lovestone, S.; Spector, T.D.; Dobson, R.J. Plasma protein biomarkers of Alzheimer’s disease endophenotypes in asymptomatic older twins: early cognitive decline and regional brain volumes. Transl. Psychiatry, 2015. 5e584
[http://dx.doi.org/10.1038/tp.2015.78] [PMID: 26080319]
[75]
Shen, L.; Liao, L.; Chen, C.; Guo, Y.; Song, D.; Wang, Y.; Chen, Y.; Zhang, K.; Ying, M.; Li, S.; Liu, Q.; Ni, J. Proteomics Analysis of Blood Serums from Alzheimer’s Disease Patients Using iTRAQ Labeling Technology. J. Alzheimers Dis., 2017, 56(1), 361-378. [http://dx.doi.org/10.3233/JAD-160913]. [PMID: 27911324].
[76]
Cardoso, B.R.; Hare, D.J.; Bush, A.I.; Li, Q.X.; Fowler, C.J.; Masters, C.L.; Martins, R.N.; Ganio, K.; Lothian, A.; Mukherjee, S.; Kapp, E.A.; Roberts, B.R. Selenium Levels in Serum, Red Blood Cells, and Cerebrospinal Fluid of Alzheimer’s Disease Patients: A Report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J. Alzheimers Dis., 2017, 57(1), 183-193. [http://dx.doi.org/10.3233/JAD-160622]. [PMID: 28222503].
[77]
Suzuki, I.; Noguchi, M.; Arito, M.; Sato, T.; Omoteyama, K.; Maedomari, M.; Hasegawa, H.; Suematsu, N.; Okamoto, K.; Kato, T.; Yamaguchi, N.; Kurokawa, M.S. Serum peptides as candidate biomarkers for dementia with Lewy bodies. Int. J. Geriatr. Psychiatry, 2015, 30(12), 1195-1206. [http://dx.doi.org/10.1002/gps.4274]. [PMID: 25754375].
[78]
Muenchhoff, J.; Poljak, A.; Song, F.; Raftery, M.; Brodaty, H.; Duncan, M.; McEvoy, M.; Attia, J.; Schofield, P.W.; Sachdev, P.S. Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J. Alzheimers Dis., 2015, 43(4), 1355-1373. [http://dx.doi.org/10.3233/JAD-141266]. [PMID: 25159666].
[79]
Kitamura, Y.; Usami, R.; Ichihara, S.; Kida, H.; Satoh, M.; Tomimoto, H.; Murata, M.; Oikawa, S. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease. Neurol. Res., 2017, 39(3), 231-238. [http://dx.doi.org/10.1080/01616412.2017.1281195]. [PMID: 28107809].
[80]
Marksteiner, J.; Imarhiagbe, D.; Defrancesco, M.; Deisenhammer, E.A.; Kemmler, G.; Humpel, C. Analysis of 27 vascular-related proteins reveals that NT-proBNP is a potential biomarker for Alzheimer’s disease and mild cognitive impairment: a pilot-study. Exp. Gerontol., 2014, 50, 114-121. [http://dx.doi.org/10.1016/j.exger.2013.12.001]. [PMID: 24333505].
[81]
Sattlecker, M.; Kiddle, S.J.; Newhouse, S.; Proitsi, P.; Nelson, S.; Williams, S.; Johnston, C.; Killick, R.; Simmons, A.; Westman, E.; Hodges, A.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Dobson, R.J. Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement., 2014, 10(6), 724-734. [http://dx.doi.org/10.1016/j.jalz.2013.09.016]. [PMID: 24768341].
[82]
Lundström, S.L.; Yang, H.; Lyutvinskiy, Y.; Rutishauser, D.; Herukka, S.K.; Soininen, H.; Zubarev, R.A. Blood plasma IgG Fc glycans are significantly altered in Alzheimer’s disease and progressive mild cognitive impairment. J. Alzheimers Dis., 2014, 38(3), 567-579. [http://dx.doi.org/10.3233/JAD-131088]. [PMID: 24028868].
[83]
Edwards, M.; Hall, J.; Williams, B.; Johnson, L.; O’Bryant, S. Molecular markers of amnestic mild cognitive impairment among Mexican Americans. J. Alzheimers Dis., 2016, 49(1), 221-228. [http://dx.doi.org/10.3233/JAD-150553]. [PMID: 26444793].
[84]
Villarreal, A.E.; O’Bryant, S.E.; Edwards, M.; Grajales, S.; Britton, G.B. Serum-based protein profiles of Alzheimer’s disease and mild cognitive impairment in elderly Hispanics. Neurodegener. Dis. Manag., 2016, 6(3), 203-213. [http://dx.doi.org/10.2217/nmt-2015-0009]. [PMID: 27229914].
[85]
O’Bryant, S.E.; Lista, S.; Rissman, R.A.; Edwards, M.; Zhang, F.; Hall, J.; Zetterberg, H.; Lovestone, S.; Gupta, V.; Graff-Radford, N.; Martins, R.; Jeromin, A.; Waring, S.; Oh, E.; Kling, M.; Baker, L.D.; Hampel, H. Comparing biological markers of Alzheimer’s disease across blood fraction and platforms: Comparing apples to oranges. Alzheimers Dement. (Amst.), 2015, 3, 27-34. [http://dx.doi.org/10.1016/j.dadm.2015.12.003]. [PMID: 27019866].
[86]
Llano, D.A.; Devanarayan, V.; Simon, A.J. Evaluation of plasma proteomic data for Alzheimer disease state classification and for the prediction of progression from mild cognitive impairment to Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2013, 27(3), 233-243. [http://dx.doi.org/10.1097/WAD.0b013e31826d597a]. [PMID: 23023094].
[87]
Korolev, I.O.; Symonds, L.L.; Bozoki, A.C. Predicting Progression from Mild Cognitive Impairment to Alzheimer’s Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification. PLoS One, 2016, 11(2)e0138866 [http://dx.doi.org/10.1371/journal.pone.0138866]. [PMID: 26901338].
[88]
Yang, H.; Lyutvinskiy, Y.; Herukka, S.K.; Soininen, H.; Rutishauser, D.; Zubarev, R.A. Prognostic polypeptide blood plasma biomarkers of Alzheimer’s disease progression. J. Alzheimers Dis., 2014, 40(3), 659-666. [http://dx.doi.org/10.3233/JAD-132102]. [PMID: 24503613].
[89]
Nazeri, A.; Ganjgahi, H.; Roostaei, T.; Nichols, T.; Zarei, M. Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer’s disease. Neuroimage, 2014, 102(Pt 2), 657-665. [http://dx.doi.org/10.1016/j.neuroimage.2014.08.041]. [PMID: 25173418].
[90]
Jammeh, E.; Zhao, P.; Carroll, C.; Pearson, S.; Ifeachor, E. Identification of blood biomarkers for use in point of care diagnosis tool for Alzheimer’s disease. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2016, 2016, 2415-2418. [http://dx.doi.org/10.1109/EMBC.2016.7591217]. [PMID: 28268812].
[91]
Zhao, X.; Lejnine, S.; Spond, J.; Zhang, C.; Ramaraj, T.C.; Holder, D.J.; Dai, H.; Weiner, R.; Laterza, O.F. A candidate plasma protein classifier to identify Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(2), 549-563. [http://dx.doi.org/10.3233/JAD-141149]. [PMID: 25114072].
[92]
O’Bryant, S.E.; Edwards, M.; Johnson, L.; Hall, J.; Villarreal, A.E.; Britton, G.B.; Quiceno, M.; Cullum, C.M.; Graff-Radford, N.R. A blood screening test for Alzheimer’s disease. Alzheimers Dement. (Amst.), 2016, 3, 83-90. [http://dx.doi.org/10.1016/j.dadm.2016.06.004]. [PMID: 27453929].
[93]
Reumiller, C.M.; Schmidt, G.J.; Dhrami, I.; Umlauf, E.; Rappold, E.; Zellner, M. Gender-related increase of tropomyosin-1 abundance in platelets of Alzheimer’s disease and mild cognitive impairment patients. J. Proteomics, 2018, 178, 73-81. [http://dx.doi.org/10.1016/j.jprot.2017.12.018]. [PMID: 29278785].
[94]
Jaeger, P.A.; Lucin, K.M.; Britschgi, M.; Vardarajan, B.; Huang, R.P.; Kirby, E.D.; Abbey, R.; Boeve, B.F.; Boxer, A.L.; Farrer, L.A.; Finch, N.; Graff-Radford, N.R.; Head, E.; Hofree, M.; Huang, R.; Johns, H.; Karydas, A.; Knopman, D.S.; Loboda, A.; Masliah, E.; Narasimhan, R.; Petersen, R.C.; Podtelezhnikov, A.; Pradhan, S.; Rademakers, R.; Sun, C.H.; Younkin, S.G.; Miller, B.L.; Ideker, T.; Wyss-Coray, T. Network-driven plasma proteomics expose molecular changes in the Alzheimer’s brain. Mol. Neurodegener., 2016, 11, 31. [http://dx.doi.org/10.1186/s13024-016-0095-2]. [PMID: 27112350].
[95]
Kang, S.; Jeong, H.; Baek, J.H.; Lee, S.J.; Han, S.H.; Cho, H.J.; Kim, H.; Hong, H.S.; Kim, Y.H.; Yi, E.C.; Seo, S.W.; Na, D.L.; Hwang, D.; Mook-Jung, I. PiB-PET Imaging-Based Serum Proteome Profiles Predict Mild Cognitive Impairment and Alzheimer’s Disease. J. Alzheimers Dis., 2016, 53(4), 1563-1576. [http://dx.doi.org/10.3233/JAD-160025]. [PMID: 27392853].
[96]
Sultana, R.; Baglioni, M.; Cecchetti, R.; Cai, J.; Klein, J.B.; Bastiani, P.; Ruggiero, C.; Mecocci, P.; Butterfield, D.A. Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic. Biol. Med., 2013, 65, 595-606. [http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.001]. [PMID: 23933528].
[97]
Kim, S.; Swaminathan, S.; Inlow, M.; Risacher, S.L.; Nho, K.; Shen, L.; Foroud, T.M.; Petersen, R.C.; Aisen, P.S.; Soares, H.; Toledo, J.B.; Shaw, L.M.; Trojanowski, J.Q.; Weiner, M.W.; McDonald, B.C.; Farlow, M.R.; Ghetti, B.; Saykin, A.J. Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel. PLoS One, 2013, 8(7)e70269 [http://dx.doi.org/10.1371/journal.pone.0070269]. [PMID: 23894628].