[1]
Hershko A, Ciechanover A. The ubiquitin system. Nat Med 1998; 67: 1-17.
[2]
Gao T, Liu Z, Wang Y, et al. UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 2013; 41: 445-51.
[3]
Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. BBA & Cell Res 2004; 1695: 55-72.
[4]
Tait SW, De VE, Maas C, et al. Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment. J Cell Biol 2007; 179: 1453-66.
[5]
Mcdowell GS, Philpott A. Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol 2013; 45: 1833-42.
[6]
Kravtsova-Ivantsiv Y, Ciechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 2012; 125: 539-48.
[7]
Nguyen VN, Huang KY, Huang CH, et al. A new scheme to characterize and identify protein ubiquitination sites. IEEE/ACM Trans. Comput Biol Bioinform 2017; 14: 393-403.
[8]
Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Sci 2013; 339: 1546-58.
[9]
Liu J, Shaik S, Dai X, et al. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta 2015; 1855: 50-60.
[10]
Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009; 458: 438-44.
[11]
Liu J, Shaik S, Dai XP, et al. Targeting the ubiquitin pathway for cancer treatment. Biochim Biophys Acta 2015; 1855: 50-60.
[12]
Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol 2018; 101: 80-93.
[13]
Wang D, Ma LN, Wang B. Liu j, Wei W Y. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36: 683-702.
[14]
Xu GQ, Jaffrey SR. Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev 2013; 29: 73-109.
[15]
Lamsou I, Uttenweiler-Joseph S, Moog-Lutz C, Lutz PG. Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets? Biochimie 2016; 122: 339-47.
[16]
Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 2006; 5: 596-613.
[18]
Kar G, Keskin O, Fraternali F, Gursoy A. Emerging role of the Ubiquitin-proteasome system as drug targets. Curr Pharm Des 2013; 19: 3175-89.
[19]
Hou YC, Deng JY. Role of E3 ubiquitin ligases in gastric cancer. World J Gastroenterol 2015; 21: 786-93.
[20]
Bielskienė K, Bagdonienė L, Mozraitienė J, Kazbarienė B, Janulionis E. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Med 2015; 51: 1-9.
[21]
Goru SK, Kadakol A, Gaikwad AB. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy. Pharmacol Res 2017; 120: 170-9.
[22]
Powell SR, Herrmann J, Lerman A, Patterson C, Wang XJ. The ubiquitin-proteasome system and cardiovascular disease. Prog Mol Biol Transl Sci 2012; 109: 295-346.
[23]
Yin J, Zhu JM, Shen XZ. The role and therapeutic implications of RING-finger E3 ubiquitin ligases in hepatocellular carcinoma. Int J Cancer 2015; 136: 249-57.
[24]
Weathington NM, Mallampalli RK. New insights on the function of SCF ubiquitin E3 ligases in the lung. Cell Signal 2013; 25: 1792-8.
[25]
Yang LT, Guo WN, Zhang SL, Wang G. Ubiquitination-proteasome system: A new player in the pathogenesis of psoriasis and clinical implications. J Dermatol Sci 2018; 89: 219-25.
[26]
Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 2018; 17: 57-78.
[29]
Bednash JS, Mallampalli RK. Targeting deubiquitinases in cancer. Methods Mol Biol 2018; 1731: 295-305.
[30]
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36: 717-36.
[31]
Chen X, Wu J, Yang Q, et al. Cadmium pyrithione suppresses tumor growth in vitro and in vivo through inhibition of proteasomal deubiquitinase.. Biometals 2018; 31: 29-43.
[33]
Yeasmin Khusbu F, Chen FZ, Chen HC. Targeting ubiquitin specific protease 7 in cancer: A deubiquitinase with great prospects. Cell Biochem Funct 2018; 36: 244-54.
[34]
McClurg UL, Azizyan M, Dransfield DT, et al. Thenovelanti-androgen candidate galeterone targets deubiquitinating enzymes, USP12 and USP46, to control prostatecancer growth and survival. Oncotarget 2018; 9: 24992-5007.
[37]
Anderson C, Crimmins S, Wilson JA, et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem 2005; 95: 724-31.
[38]
Gao TS, Liu ZX, Wang YB, Xue Y. Ubiquitin and Ubiquitin-Like conjugations in complex diseases: a computational perspective; Shen B. Bioinformatics for Diagnosis, Prognosis and Treatment
of ComplexDiseases: Springer Netherlands 2013; 171-87.
[39]
Maor R, Jones A, Nhse TS, et al. Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 2007; 6: 601-10.
[41]
Hitchcock AL, Auld K, Gygi SP, et al. A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc Natl Acad Sci USA 2003; 100: 12735-40.
[42]
Peng J, Schwartz D, Elias JE, et al. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21: 921-6.
[43]
Radivojac P, Vacic V, Haynes C, et al. Identification, analysis and prediction of protein ubiquitination sites. Proteins 2010; 78: 365-80.
[45]
Cai Y, Huang T, Hu L, et al. Prediction of lysine ubiquitination with mRMR feature selection. Amino Acids 2012; 42: 1387-95.
[46]
Chen Z, Zhou Y, Song J, et al. hCKSAAP_UbSite: Improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties. Biochim Biophys Acta 2013; 1834: 1461-7.
[48]
Walsh I, Di DT, Tosatto SC. RUBI: rapid proteomic-scale prediction of lysine ubiquitination and factors influencing predictor performance. Amino Acids 2014; 46: 853-62.
[49]
Wang JR, Huang WL, Tsai MJ, et al. ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives. Bioinformatics 2017; 33: 661-8.
[52]
Kim W, Bennett EJ, Huttlin EL, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44: 325-40.
[53]
Chen X, Qiu JD, Shi SP, et al. Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites. Bioinformatics 2013; 29: 1614-22.
[55]
Starita LM, Lo RS, Eng JK, et al. Sites of ubiquitin attachment in saccharomyces cerevisiae. Proteomics 2012; 12: 236-40.
[56]
Kim DY, Scalf M, Smith LM, et al. Advanced proteomic analyses yield a deep catalog of ubiquitylation targets in Arabidopsis. Plant Cell 2013; 25: 1523-40.
[57]
Wagner SA, Beli P, Weinert BT, et al. Proteomic analyses reveal divergent ubiquitylation site Patterns in murine tissues. Mol Cell Proteomics 2012; 11(12): 1578-85.
[58]
Mertins P, Qiao JW, Patel J, et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 2013; 10: 634-7.
[59]
Udeshi ND, Svinkina T, Mertins P, et al. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 2013; 12: 825-31.
[60]
Chen Z, Zhou Y, Zhang Z, et al. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features. Briefing Bioinform 2015; 16: 640-57.
[61]
Zhao X, Li X, Ma Z, et al. Prediction of lysine ubiquitylation with ensemble classifier and feature selection. Int J Mol Sci 2011; 12: 8347-61.
[63]
Consortium UP. UniProt: a hub for protein information. Nucleic Acids Res 2015; 43: 204-12.
[64]
Boeckmann B, Bairoch A, Apweiler R, et al. The Swiss-Prot knowledgebase and its supplement mTREMBL in 2003. Nucleic Acids Res 2003; 31: 365-70.
[65]
Cherry JM, Adler C, Ball C, et al. SGD: saccharomyces genome database. Nucleic Acids Res 1998; 26: 73-9.
[66]
Li H, Xing X, Ding G, et al. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 2009; 8: 1839-49.
[67]
Lee TY, Huang HD, Hung JH, et al. dbPTM: an information repository of protein post-translational modification. Nucleic Acids Res 2006; 34: D622-7.
[69]
Hornbeck PV, Kornhauser JM, Sasha T, et al. PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2011; 40: 261-70.
[71]
Liu Z, Wang Y, Gao T, et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res 2014; 42: 531-6.
[72]
Boutet E, Lieberherr D, Tognolli M, et al. UniProtKB/Swiss-Prot. Methods Mol Biol 2007; 406: 89-112.
[74]
Shi SP, Xu HD, Wen PP, et al. Progress and challenges in predicting protein methylation sites. Mol Biosyst 2015; 11: 2610-9.
[75]
Huang Y, Niu B, Gao Y, et al. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinform 2010; 26: 680-2.
[76]
Jia C, Zuo Y, Zou Q, et al. O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique. Bioinform 2018; 34: 2029-36.
[77]
Kawashima S, Pokarowski P, Pokarowska M, et al. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 2008; 36: 202-5.
[78]
Bryson K, Mcguffin LJ, Marsden RL, et al. Protein structure prediction servers at University College London. Nucleic Acids Res 2005; 33: 36-8.
[79]
Sickmeier M, Hamilton JA, Legall T, et al. DisProt: the database of disordered proteins. Nucleic Acids Res 2007; 35: D786-93.
[81]
Walsh I, Martin AJM, Domenico TD, et al. ESpritz: accurate and fast prediction of protein disorder. Bioinform 2012; 28: 503-9.
[82]
Pang CN, Hayen A, Wilkins MR. Surface accessibility of protein post-translational modifications. J Proteome Res 2007; 6: 1833-45.
[83]
Ahmad S, Gromiha MM, Sarai A. RVP-net: online prediction of real valued accessible surface area of proteins from single sequences. Bioinform 2003; 19: 1849-51.
[84]
Lin S, Song Q, Tao H, et al. Rice_Phospho 1.0: a new rice-specific SVM predictor for protein phosphorylation sites. Sci Rep 2015; 5: 11940.
[85]
Lee TY, Hsu JBK, Lin FM, et al. N-Ace: using solvent accessibility and physicochemical properties to identify protein N-acetylation sites. J Comput Chem 2010; 31: 2759-71.
[86]
Niu S, Huang T, Feng K, et al. Prediction of tyrosine sulfation with mRMR feature selection and analysis. Proteome Res 2010; 9: 6490-7.
[87]
Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinform 2007; 23: 2507-17.
[88]
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27: 1226-38.
[89]
Ho SY, Chen JH, Huang MH. Inheritable genetic algorithm for biobjective 0/1 combinatorial optimization problems and its applications. IEEE Trans Syst Man Cybern 2004; 34: 609-20.
[90]
Hans C. Bayesian lasso regression. Biometrika 2009; 96: 835-45.
[91]
Casella TPG. The Bayesian Lasso. J Am Stat Assoc 2008; 103: 681-6.
[92]
Meszlényi R, Peska L, Gál V, et al. Classification of fMRI data using dynamic time warping based functional connectivity analysis. Signal Processing Conf 2016; 245-49.
[94]
Yang H, Qiu WR, Liu G, et al. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int J Biol Sci 2018; 14: 883-91.
[96]
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2005; 27: 861-74.