[1]
Lee B, Zhao Q, Habtezion A. Immunology of pancreatitis and environmental factors. Curr Opin Gastroenterol 2017; 33(5): 383-9.
[2]
Ewald N, Hardt PD. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis. World J Gastroenterol 2013; 19(42): 7276-81.
[3]
Wynne K, Devereaux B, Dornhorst A. Diabetes of the exocrine pancreas. J Gastroenterol Hepatol 2018. [Epub ahead of print].
[4]
Makuc J. Management of pancreatogenic diabetes: challenges and solutions. Diabetes Metab Syndr Obes 2016; 9: 311-5.
[5]
Gruessner RW, Cercone R, Galvani C, et al. Results of open and robot-assisted pancreatectomies with autologous islet transplantations: treating chronic pancreatitis and preventing surgically induced diabetes. Transplant Proc 2014; 46(6): 1978-9.
[6]
Maeda H, Hanazaki K. Pancreatogenic diabetes after pancreatic resection. Pancreatology 2011; 11(2): 268-76.
[7]
Duggan SN, Ewald N, Kelleher L, Griffin O, Gibney J, Conlon KC. The nutritional management of type 3c (pancreatogenic) diabetes in chronic pancreatitis. Eur J Clin Nutr 2017; 71(1): 3-8.
[8]
Woodmansey C, McGovern AP, McCullough KA, et al. Incidence, Demographics, and Clinical Characteristics of Diabetes of the Exocrine Pancreas (Type 3c): A Retrospective Cohort Study. Diabetes Care 2017; 40(11): 1486-93.
[9]
Balamurugan A, Loganathan G, Lockridge A, et al. Islet Isolation from Pancreatitis Pancreas for Islet Autotransplantation Islets of Langerhans. Springer 2015; pp. 1199-227.
[10]
Morrison CP, Wemyss-Holden SA, Dennison AR, Maddern GJ. Islet yield remains a problem in islet autotransplantation. Arch Surg 2002; 137(1): 80-3.
[11]
Chinnakotla S, Radosevich DM, Dunn TB, et al. Long-term outcomes of total pancreatectomy and islet auto transplantation for hereditary/genetic pancreatitis. J Am Coll Surg 2014; 218(4): 530-43.
[12]
Balamurugan AN, Loganathan G, Bellin MD, et al. A new enzyme mixture to increase the yield and transplant rate of autologous and allogeneic human islet products. Transplantation 2012; 93(7): 693-702.
[13]
Sutherland DE, Radosevich DM, Bellin MD, et al. Total pancreatectomy and islet autotransplantation for chronic pancreatitis. J Am Coll Surg 2012; 214(4): 409-24. discussion 24-6.
[14]
Afelik S, Rovira M. Pancreatic beta-cell regeneration: Facultative or dedicated progenitors? Mol Cell Endocrinol 2017; 445: 85-94.
[15]
Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol 2000; 24(3): 297-302.
[16]
Corritore E, Lee YS, Sokal EM, Lysy PA. beta-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7(4): 182-99.
[17]
Bonner-Weir S, Guo L, Li WC, et al. Islet neogenesis: A possible pathway for beta-cell replenishment. Rev Diabet Stud 2012; 9(4): 407-16.
[18]
Bonner-Weir S, Inada A, Yatoh S, et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 2008; 36(Pt 3): 353-6.
[19]
Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic beta Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab 2018; 27(1): 57-67.
[20]
Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol 2002; 197(4): 519-26.
[21]
Ziv O, Glaser B, Dor Y. The plastic pancreas. Dev Cell 2013; 26(1): 3-7.
[22]
Cito M, Pellegrini S, Piemonti L, Sordi V. The potential and challenges of alternative sources of beta cells for the cure of type 1 diabetes. Endocr Connect 2018; 7(3): R114-25.
[23]
Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell 2007; 13(1): 103-14.
[24]
Lysy PA, Weir GC, Bonner-Weir S. Making beta cells from adult cells within the pancreas. Curr Diab Rep 2013; 13(5): 695-703.
[25]
Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 2011; 240(3): 530-65.
[26]
Wandzioch E, Zaret KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 2009; 324(5935): 1707-10.
[27]
Kopp JL, Dubois CL, Hao E, Thorel F, Herrera PL, Sander M. Progenitor cell domains in the developing and adult pancreas. Cell Cycle 2011; 10(12): 1921-7.
[28]
Li WC, Rukstalis JM, Nishimura W, et al. Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J Cell Sci 2010; 123(Pt 16): 2792-802.
[29]
Xu X, D’Hoker J, Stange G, et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132(2): 197-207.
[30]
Hoesli CA, Johnson JD, Piret JM. Purified human pancreatic duct cell culture conditions defined by serum-free high-content growth factor screening. PLoS One 2012; 7(3): e33999.
[31]
Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000; 97(14): 7999-8004.
[32]
Kerr-Conte J, Pattou F, Lecomte-Houcke M, et al. Ductal cyst formation in collagen-embedded adult human islet preparations. A means to the reproduction of nesidioblastosis in vitro. Diabetes 1996; 45(8): 1108-14.
[33]
Ma D, Tang S, Song J, et al. Culturing and transcriptome profiling of progenitor-like colonies derived from adult mouse pancreas. Stem Cell Res Ther 2017; 8(1): 172.
[34]
Loomans CJM, Williams Giuliani N, Balak J, et al. Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports 2018; 10(3): 712-24.
[35]
Swales N, Martens GA, Bonne S, et al. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming. PLoS One 2012; 7(5): e37055.
[36]
Gomez DL, O’Driscoll M, Sheets TP, et al. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate. PLoS One 2015; 10(8): e0133862.
[37]
Yamada T, Cavelti-Weder C, Caballero F, et al. Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing beta-Like Cells. Endocrinology 2015; 156(6): 2029-38.
[38]
Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A. Beta-cell growth and regeneration: replication is only part of the story. Diabetes 2010; 59(10): 2340-8.
[39]
Seeberger KL, Eshpeter A, Rajotte RV, Korbutt GS. Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial-mesenchymal transition is an artifact of cell culture. Lab Invest 2009; 89(2): 110-21.
[40]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[41]
Russ HA, Sintov E, Anker-Kitai L, et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS One 2011; 6(9): e25566.
[42]
Bar Y, Russ HA, Sintov E, Anker-Kitai L, Knoller S, Efrat S. Redifferentiation of expanded human pancreatic beta-cell-derived cells by inhibition of the NOTCH pathway. J Biol Chem 2012; 287(21): 17269-80.
[43]
Corritore E, Dugnani E, Pasquale V, et al. Beta-Cell differentiation of human pancreatic duct-derived cells after in vitro expansion. Cell Reprogram 2014; 16(6): 456-66.
[44]
Zhang M, Lin Q, Qi T, et al. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into beta cells in mice with reversal of diabetes. Proc Natl Acad Sci USA 2016; 113(3): 650-5.
[45]
Dorrell C, Tarlow B, Wang Y, et al. The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Res 2014; 13(2): 275-83.
[46]
Lee J, Sugiyama T, Liu Y, et al. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. Elife 2013; 2: e00940.
[47]
Sancho R, Gruber R, Gu G, Behrens A. Loss of Fbw7 reprograms adult pancreatic ductal cells into alpha, delta, and beta cells. Cell Stem Cell 2014; 15(2): 139-53.
[48]
Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA 2010; 107(1): 75-80.
[49]
Zhang T, Wang H, Saunee NA, Breslin MB, Lan MS. Insulinoma-associated antigen-1 zinc-finger transcription factor promotes pancreatic duct cell trans-differentiation. Endocrinology 2010; 151(5): 2030-9.
[50]
Assouline-Thomas B, Ellis D, Petropavlovskaia M, Makhlin J, Ding J, Rosenberg L. Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development. Differentiation 2015; 90(4-5): 77-90.
[51]
Kikugawa R, Katsuta H, Akashi T, et al. Differentiation of COPAS-sorted non-endocrine pancreatic cells into insulin-positive cells in the mouse. Diabetologia 2009; 52(4): 645-52.
[52]
Klein D, Alvarez-Cubela S, Lanzoni G, et al. BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes 2015; 64(12): 4123-34.
[53]
Criscimanna A, Speicher JA, Houshmand G, et al. Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 2011; 141(4): 1451-62. 62 e1-6
[54]
Thorel F, Nepote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464(7292): 1149-54.
[55]
Li W, Nakanishi M, Zumsteg A, et al. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. Elife 2014; 3: e01846.
[56]
Wang Y, Dorrell C, Naugler WE, et al. Long-term correction of diabetes in mice by in vivo reprogramming of pancreatic ducts. Mol Ther 2018; 26(5): 1327-42.
[57]
Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 1993; 42(12): 1715-20.
[58]
Inada A, Nienaber C, Katsuta H, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 2008; 105(50): 19915-9.
[59]
Tellez N, Montanya E. Gastrin induces ductal cell dedifferentiation and beta-cell neogenesis after 90% pancreatectomy. J Endocrinol 2014; 223(1): 67-78.
[60]
Suarez-Pinzon WL, Lakey JR, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet beta-cells from pancreatic duct cells and an increase in functional beta-cell mass. J Clin Endocrinol Metab 2005; 90(6): 3401-9.
[61]
Yamaguchi J, Liss AS, Sontheimer A, et al. Pancreatic duct glands (PDGs) are a progenitor compartment responsible for pancreatic ductal epithelial repair. Stem Cell Res 2015; 15(1): 190-202.
[62]
El-Gohary Y, Wiersch J, Tulachan S, et al. Intraislet Pancreatic Ducts Can Give Rise to Insulin-Positive Cells. Endocrinology 2016; 157(1): 166-75.
[63]
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455(7213): 627-32.
[64]
Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. beta-Cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 2013; 62(5): 1634-45.
[65]
Cavelti-Weder C, Shtessel M, Reuss JE, et al. Pancreatic duct ligation after almost complete beta-cell loss: exocrine regeneration but no evidence of beta-cell regeneration. Endocrinology 2013; 154(12): 4493-502.
[66]
Solar M, Cardalda C, Houbracken I, et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17(6): 849-60.
[67]
Rezanejad H, Ouziel-Yahalom L, Keyzer CA, et al. Heterogeneity of SOX9 and HNF1beta in Pancreatic Ducts Is Dynamic. Stem Cell Reports 2018; 10(3): 725-38.
[68]
Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011; 43(1): 34-41.
[69]
Kopp JL, Dubois CL, Schaffer AE, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 2011; 138(4): 653-65.
[70]
Pan FC, Bankaitis ED, Boyer D, et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 2013; 140(4): 751-64.
[71]
Al-Hasani K, Pfeifer A, Courtney M, et al. Adult duct-lining cells can reprogram into beta-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 2013; 26(1): 86-100.
[72]
Courtney M, Gjernes E, Druelle N, et al. The inactivation of Arx in pancreatic alpha-cells triggers their neogenesis and conversion into functional beta-like cells. PLoS Genet 2013; 9(10): e1003934.
[73]
Collombat P, Xu X, Ravassard P, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138(3): 449-62.
[74]
Kopinke D, Murtaugh LC. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev Biol 2010; 10: 38.
[75]
Ricordi C, Goldstein JS, Balamurugan AN, et al. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities. Diabetes 2016; 65(11): 3418-28.
[76]
Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4): 230-8.
[77]
Brennan DC, Kopetskie HA, Sayre PH, et al. Long-Term Follow-Up of the Edmonton Protocol of Islet Transplantation in the United States. Am J Transplant 2016; 16(2): 509-17.
[78]
Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia. Diabetes Care 2016; 39(7): 1230-40.
[79]
Bottino R, Knoll MF, Knoll CA, Bertera S, Trucco MM. The Future of Islet Transplantation Is Now. Front Med (Lausanne) 2018; 5: 202.
[80]
Bellin MD, Abu-El-Haija M, Morgan K, et al. A multicenter study of total pancreatectomy with islet autotransplantation (TPIAT): POST (Prospective Observational Study of TPIAT). Pancreatology 2018; 18(3): 286-90.
[81]
Morgan K, Owczarski SM, Borckardt J, Madan A, Nishimura M, Adams DB. Pain control and quality of life after pancreatectomy with islet autotransplantation for chronic pancreatitis. J Gastrointest Surg 2012; 16(1): 129-33. discussion 33-4.
[82]
Solomina J, Golebiewska J, Kijek MR, et al. Pain control, glucose control, and quality of life in patients with chronic pancreatitis after total pancreatectomy with islet autotransplantation: A preliminary report. Transplant Proc 2017; 49(10): 2333-9.
[83]
Bellin MD, Parazzoli S, Oseid E, et al. Defective glucagon secretion during hypoglycemia after intrahepatic but not nonhepatic islet autotransplantation. Am J Transplant 2014; 14(8): 1880-6.
[84]
Chinnakotla S, Beilman GJ, Dunn TB, et al. Factors predicting outcomes after a total pancreatectomy and islet autotransplantation lessons learned from over 500 cases. Ann Surg 2015; 262(4): 610-22.
[85]
Takita M, Lara LF, Naziruddin B, et al. Effect of the duration of chronic pancreatitis on pancreas islet yield and metabolic outcome following islet autotransplantation. J Gastrointest Surg 2015; 19(7): 1236-46.
[86]
McEachron KR, Bellin MD. Total pancreatectomy and islet autotransplantion for chronic and recurrent acute pancreatitis. Curr Opin Gastroenterol 2018; 34(5): 367-73.
[87]
Wilson GC, Sutton JM, Abbott DE, et al. Long-term outcomes after total pancreatectomy and islet cell autotransplantation: Is it a durable operation? Ann Surg 2014; 260(4): 659-65. discussion 65- 7
[88]
Lin YK, Faiman C, Johnston PC, et al. Spontaneous Hypoglycemia After Islet Autotransplantation for Chronic Pancreatitis. J Clin Endocrinol Metab 2016; 101(10): 3669-75.
[89]
Shindo Y, Kanak MA. Total pancreatectomy with islet autotransplantation: Recent updates and outcomes. Curr Opin Organ Transplant 2017; 22(5): 444-51.
[90]
Zhou J, Pineyro MA, Wang X, Doyle ME, Egan JM. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta transcription factors. J Cell Physiol 2002; 192(3): 304-14.
[91]
Hardikar AA, Marcus-Samuels B, Geras-Raaka E, Raaka BM, Gershengorn MC. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc Natl Acad Sci USA 2003; 100(12): 7117-22.
[92]
Baron M, Veres A, Wolock SL, et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intracell Population Structure. Cell Syst 2016; 3(4): 346-60 e4.
[93]
Dorrell C, Schug J, Canaday PS, et al. Human islets contain four distinct subtypes of beta cells. Nat Commun 2016; 7: 11756.
[94]
Segerstolpe A, Palasantza A, Eliasson P, et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 2016; 24(4): 593-607.
[95]
Xin Y, Kim J, Okamoto H, et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 2016; 24(4): 608-15.
[96]
Zou C, Lu Y, Teng X, et al. MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Sci Rep 2017; 7(1): 2505.
[97]
Yasunaga K, Ito T, Miki M, et al. Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy.BioMed Research International. (8719397)8 pages. 2018; 2018 : p.
[98]
Donadel G, Pastore D, Della-Morte D, et al. FGF-2b and h-PL transform duct and non-endocrine human pancreatic cells into endocrine insulin secreting cells by modulating differentiating genes. Int J Mol Sci 2017; 18(11): 2234.
[99]
Lima MJ, Muir KR, Docherty HM, et al. Generation of functional beta-like cells from human exocrine pancreas. PLoS One 2016; 11(5): e0156204.
[100]
Vieira A, Druelle N, Avolio F, et al. Beta-Cell Replacement Strategies: The Increasing Need for a “beta-Cell Dogma”. Front Genet 2017; 8: 75.
[101]
Sheets TP, Park KE, Park CH, et al. Targeted Mutation of NGN3 Gene Disrupts Pancreatic Endocrine Cell Development in Pigs. Sci Rep 2018; 8(1): 3582.
[102]
Zhao JB, Liao DH, Nissen TD. Animal models of pancreatitis: can it be translated to human pain study? World J Gastroenterol 2013; 19(42): 7222-30.
[103]
Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. Fibrogenesis Tissue Repair 2011; 4(1): 26.
[104]
Xiao X, Guo P, Shiota C, et al. Endogenous Reprogramming of Alpha Cells into Beta Cells, Induced by Viral Gene Therapy, Reverses Autoimmune Diabetes. Cell Stem Cell 2018; 22(1): 78-90 e4..