[1]
Strauss, J.S.; Krowchuk, D.P.; Leyden, J.J.; Lucky, A.W.; Shalita, A.R.; Siegfried, E.C.; Thiboutot, D.M.; Van Voorhees, A.S.; Beutner, K.A.; Sieck, C.K.; Bhushan, R. Guidelines of care for acne vulgaris management. J. Am. Acad. Dermatol., 2007, 56(4), 651-663.
[2]
Titus, S.; Hodge, J. Diagnosis and treatment of acne. Am. Fam. Phys, 2012, 86(8), 734-740.
[3]
Ramanathan, S.; Hebert, A.A. Management of acne vulgaris. J. Pediatr. Health Care, 2011, 25(5), 332-337.
[4]
Thakur, A.; Lariya, N.K.; Agarwal, A.; Tiwari, B.K.; Kharya, A.K.; Agrawal, H.; Agrawal, G.P. Nanoparticles-in-microspheres based dual drug delivery system for topical delivery of anti-acne drugs. Int. J. Adv. Res., 2013, 1(5), 176-188.
[5]
Najafi-Taher, R.; Amani, A. Nanoemulsions: Colloidal topical delivery systems for antiacne agents- A Mini-Review. Nanomed. Res. J., 2017, 2(1), 49-56.
[6]
Kumar, G.S.; Jayaveera, K.N.; Kumar, C.K.; Sanjay, U.P.; Swamy, B.M.; Kumar, D.V. Antimicrobial effects of Indian medicinal plants against acne-inducing bacteria. Trop. J. Pharm. Res., 2007, 6(2), 717-723.
[7]
Khorvash, F.; Abdi, F.; Kashani, H.H.; Naeini, F.F.; Narimani, T. Staphylococcus aureus in acne pathogenesis: A Case-Control Study. N. Am. J. Med. Sci., 2012, 4(11), 573-576.
[8]
Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 2010, 15(5), 3200-3210.
[9]
Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet, 2012, 379, 361-372.
[10]
Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment modalities for acne. Molecules, 2016, 21(8), 1-20.
[11]
Vallerand, I.A.; Lewinson, R.T.; Farris, M.S.; Sibley, C.D.; Ramien, M.L.; Bulloch, A.G.M.; Patten, S.B. Efficacy and adverse events of oral isotretinoin for acne: A systemic review. Br. J. Dermatol., 2018, 178(1), 76-85.
[12]
Adityan, B.; Kumari, R.; Thappa, D.V. Scoring systems in acne vulgaris. Indian J. Dermatol. Venereol. Leprol., 2009, 75(3), 323-326.
[13]
Fabbrocini, G.; Annunziata, M.C.; D’ Arco, V.; De Vita, V.; Lodi, G.; Mauriello, M.C.; Pastore, F.; Monfrecola, G. Acne scars: Pathogenesis, classification and treatment. Dermatol. Res. Pract., 2010, 2010, 1-13.
[14]
Nast, A.; Dreno, B.; Bettoli, V.; Bukvic, M.Z.; Degitz, K.; Dressler, C.; Finlay, A.Y.; Haedersal, M.; Lambert, J.; Layton, A.; Lombholt, H.B.; Lopez-Estebaranz, J.L.; Ochsendorf, F.; Oprica, C.; Rosumeck, S.; Simonart, T.; Werner, R.N.; Gollnick, H. European evidence-based (S3) guideline for the treatment of acne – update 2016 – short version. J. Eur. Acad. Dermatol. Venereol., 2016, 30, 1261-1268.
[15]
Vyas, A.; Sonker, A.K.; Gidwani, B. Carrrier-Based Drug Delivery system for treatment of acne. Sci. World J., 2014, 2014, 1-14.
[16]
Pochi, P.E.; Shalita, A.R.; Strauss, J.S.; Webster, S.B.; Cunliffe, W.J.; Irving, K.H.; Kligman, A.M.; Leyden, J.J.; Lookingbill, D.P.; Plewig, G.; Reisner, R.M.; Rodman, Jr , O.G.; Turner, M.L.; Webster, G.F. Report of the consensus conference on acne classification. J. Am. Acad. Dermatol., 1991, 24(3), 495-500.
[17]
Oakley, A. How to treat acne. BPJ, 2011, 20, 7-16.
[18]
Bseiso, E.A.; Nasr, M.; Sammour, O.; Abd El Gawad, N.A. Recent advances in topical formulation carriers of antifungal agents. Indian J. Dermatol. Venereol. Leprol., 2015, 81(5), 457-463.
[19]
Tabassum, N.; Hamdani, M. Plants used to treat skin diseases. Pharmacogn. Rev., 2014, 8(15), 52-60.
[20]
Yarnell, E.; Abascal, K. Botanical medicine for thyroid regulation. J. Altern. Complement. Med., 2006, 12(3), 107-112.
[21]
Antonio, J.R.; Antônio, C.R.; Cardeal, I.L.S.; Ballavenuto, J.M.A.; Oliveira, J.R. Nanotechnology in dermatology. An. Bras. Dermatol., 2014, 89(1), 126-136.
[22]
Shilakari, G.; Singh, D.; Asthana, A. Novel vesicular carriers for topical drug delivery and their application’s. Int. J. Pharm. Sci. Rev. Res., 2013, 21(1), 77-86.
[23]
Vinardell, M.P.; Mitjans, M. Nanocarriers for delivery of antioxidants on the skin. Cosmetics, 2015, 2, 342-354.
[24]
Maia, C.S.; Mehnert, W.; Schäfer-Korting, M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int. J. Pharm., 2000, 196(2), 165-167.
[25]
Stella, B.; Peira, E.; Dianzani, C.; Gallarate, M.; Battaglia, L.; Gigliotti, C.L.; Boggio, E.; Dianzani, U.; Dosio, F. Development and characterization of solid lipid nanoparticles loaded with a highly active doxorubicin derivative. Nanomaterials , 2018, 8(2), 110.
[26]
Zhang, J.; Purdon, C.H.; Smith, E.W. Solid lipid nanoparticles for topical drug delivery. Am. J. Drug Deliv., 2006, 4(4), 215-220.
[27]
Jain, A.K.; Jain, A.; Garg, N.K.; Agarwal, A.; Jain, A.; Jain, S.A.; Tyagi, R.K.; Jain, R.K.; Agrawal, H.; Agrawal, G.P. Adapalene loaded solid lipid nanoparticles gel : An effective approach for acne treatment. Colloids Surf. B Biointerfaces, 2014, 121, 222-229.
[28]
Shah, K.A.; Date, A.A.; Joshi, M.D.; Patravale, V.B. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int. J. Pharm., 2007, 345(1-2), 163-171.
[29]
Layegh, P.; Mosallaei, N.; Bagheri, D.; Jaafari, M.R.; Golmohammadzadeh, S. The efficacy of isotretinoin-loaded solid lipid nanoparticles in comparison to Isotrex ® on acne treatment. Nanomed. J., 2014, 1(1), 38-47.
[30]
Castro, G.A.; Oréfice, R.L.; Vilela, J.M.C.; Andrade, M.S.; Ferreira, L.A.M. Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. J. Microencapsul., 2007, 24(5), 395-407.
[31]
Silva, E.L.; Carneiro, G.; De Araújo, L.A. TrindadeMde, J.; Yoshida, M.I.; Oréfice, R.L.; Farias Lde, M.; De Carvalho, M.A.; Dos Santos, S.G.; Goulart, G.A.; Alves, R.J.; Ferreira, L.A. Solid lipid nanoparticles loaded with retinoic acid and lauric acid as an alternative for topical treatment of acne vulgaris. J. Nanosci. Nanotechnol., 2015, 15(1), 792-799.
[32]
Domínguez-delgado, C.L.; Rodríguez-cruz, I.M.; Escobar-chávez, J.J.; Calderón-lojero, I.O.; Quintanar-guerrero, D.; Ganem, A. Preparation and characterization of triclosan nanoparticles intended to be used for the treatment of acne. Eur. J. Pharm. Biopharm., 2011, 79(1), 102-107.
[33]
Pokharkar, V.B.; Mendiratta, C.; Kyadarkunte, A.Y.; Bhosale, S.H.; Barhate, G.A. Skin delivery aspects of benzoyl peroxide-loaded solid lipid nanoparticles for acne treatment. Ther. Deliv., 2014, 5(6), 635-652.
[34]
Vijayan, V.; Aafreen, S.; Sakthivel, S.; Reddy, K.R. Formulation and characterization of solid lipid nanoparticles loaded neem oil for topical treatment of acne. J. Acute Dis., 2013, 2(4), 282-286.
[35]
Jain, A.; Garg, N.K.; Jain, A.; Kesharwani, P.; Jain, A.K.; Nirbhavane, P.; Tyagi, R.K. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev. Ind. Pharm., 2016, 42(6), 897-905.
[36]
Kumari, S.; Pandita, D.; Poonia, N.; Lather, V. Nanostuctured lipid carriers for topical delivery of an anti-acne drug: Characterization and ex-vivo evaluation. Pharm. Nanotechnol., 2015, 3(2), 122-133.
[37]
Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-semnani, K.; Valizadeh, H.; Maniruzzaman, M.; Farmoudeh, A.; Nokhodchi, A. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS J., 2016, 18(5), 1469-1474.
[38]
Ghate, V.M.; Lewis, S.A.; Prabhu, P.; Dubey, A.; Patel, N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur. J. Pharm. Biopharm., 2016, 108, 253-261.
[39]
Patwekar, S.L.; Pedewad, S.R.; Gattani, S. Development and evaluation of nanostructured lipid carriers-based gel of isotretinoin. Part. Sci. Technol., 2017, 35, 1-12.
[40]
Nasr, M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv., 2016, 23(4), 1444-1452.
[41]
Wu, X.; Guy, R.H. Applications of nanoparticles in topical drug delivery and in cosmetics. J. Drug Deliv. Sci. Technol., 2009, 19(6), 371-384.
[42]
Badruddoza, A.Z.; Gupta, A.; Myerson, A.S.; Trout, B.L.; Doyle, P.S. Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Adv. Ther., 2018, 1700020, 1-8.
[43]
Miastkowska, M.; Sikora, E.; Ogonowski, J.; Zielin, M.; Łudzik, A. The kinetic study of isotretinoin release from nanoemulsion. Colloids Surf. A., 2016, 510, 63-68.
[44]
Borges, V.R.; Simon, A.; Sena, A.R.; Cabral, L.M.; de Sousa, V.P. Nanoemulsion containing dapsone for topical administration: A study of in vitro release and epidermal permeation. Int. J. Nanomed, 2013, 8, 535-544.
[45]
Sunilendu, B.R.; Kothari, J.S.; Shafiq, S.; Pancholi, J.S.; Patel, J.D.; Ravindra, M. Pharmaceutical compositions of anti-acne agents. U.S Patent 2013/0280308 A1, October 24 2013.
[46]
Prasad, S.; Mukhopadhyay, A.; Kubavat, A.; Kelkar, A.; Modi, A.; Swarnkar, B.; Bajaj, B.; Vedamurthy, M.; Sheikh, S.; Mittal, R. Efficacy and safety of a nano-emulsion gel formulation of adapalene 0.1% and clindamycin 1% combination in acne vulgaris: A randomized, open label, active-controlled, multicentric, phase IV clinical trial. Indian J. Dermatol. Venereol. Leprol., 2012, 78(4), 459-467.
[47]
Bhavsar, B.; Choksi, B.; Sanmukhani, J.; Dogra, A.; Haq, R.
Mehta, S.; Mukherjee, S.; Subramanian, V.; Sheikh, S.; Mittal, R. Clindamycin 1% nano-emulsion gel formulation for the treatment of acne vulgaris: Results of a randomized, active controlled, multicentre, phase IV clinical trial. J. Clin. Diagn. Res., 2014, 8(8), YC05-YC09.
[48]
Zhang, S.; Wu, Y.; He, B.; Luo, K.; Gu, Z. Biodegradable polymeric nanoparticles based on amphiphilic principle: Construction and application in drug delivery. Sci. China Chem., 2014, 57(4), 461-475.
[49]
Ridolfi, D.M.; Marcato, P.D.; Justo, G.Z.; Cordi, L.; Machado, D.; Durán, N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf. B Biointerfaces, 2012, 93, 36-40.
[50]
Friedman, A.J.; Phan, J.; Schairer, D.O.; Champer, J.; Qin, M.; Pirouz, A.; Blecher-Paz, K.; Oren, A.; Liu, P.T.; Modlin, R.L.; Kim, J. Antimicrobial and anti-Inflammatory activity of chitosan–alginate nanoparticles: Atargeted therapy for cutaneous pathogens. J. Invest. Dermatol., 2013, 133(5), 1231-1239.
[51]
Nasr, M.; Awad, G.A.; Mansour, S.; AlShamy, A.; Mortada, N.D. Hydrophilic versus hydrophobic porogens for engineering of poly(lactide-co-glycolide) microparticles containing risedronate sodium. Pharm. Dev. Technol., 2013, 18(5), 1078-1088.
[52]
Nasr, M.; Awad, G.A.S.; Mansour, S.; Taha, I.; AlShamy, A.; Mortada, N.D. Different modalities of NaCl osmogen in biodegradable microspheres for bone deposition of risedronate sodium by alveolar targeting. Eur. J. Pharm. Biopharm., 2011, 79(3), 601-611.
[53]
Reis, C.P.; Gomes, A.; Rijo, P.; Candeias, S.; Pinto, P.; Baptista, M.; Martinho, N.; Ascensão, L. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles. Microsc. Microanal., 2013, 19(5), 1141-1150.
[54]
Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Simone, II, C.B.; Raghavan, S.R.; Polf, J.; Mahmood, J. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules, 2018, 23(2), 288.
[55]
Varun, T.; Sonia, A.; Bharat, P.; Patil, V. Niosomes and liposomes - vesicular approach towards transdermal drug delivery. Int. J. Pharm. Chem. Sci, 2012, 1(3), 981-993.
[56]
Akbarzadeh, A.; Rezaei-sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[57]
Egbaria, K.; Weiner, N. Liposomes as a topical drug delivery system. Adv. Drug Deliv. Rev., 1990, 5(3), 287-300.
[58]
Kulkarni, S.B.; Betageri, G.V.; Singh, M. Factors affecting microencapsulation of drugs in liposomes. J. Microencapsul., 1995, 12(3), 229-246.
[59]
Nasr, M.; Mansour, S.; Mortada, N.D.; ElShamy, A.A. Vesicular aceclofenac systems: A comparative study between liposomes and niosomes. J. Microencapsul., 2008, 25(7), 499-512.
[60]
Argan, N.; Harikumar, S.L. Nirmala. Topical liposomal gel: A novel drug delivery system. Int. J. Res. Pharm. Chem., 2012, 2(2), 383-391.
[61]
Bhalerao, S.S.; Raje, H.A. Preparation, optimization, characterization, and stability studies of salicylic acid liposomes. Drug Dev. Ind. Pharm., 2003, 29(4), 451-467.
[62]
Kaur, N.; Puri, R.; Jain, S.K. Drug-cyclodextrin-vesicles dual carrier approach for skin targeting of anti-acne agent. AAPS PharmSciTech, 2010, 11(2), 528-537.
[63]
Rahman, S.A.; Abdelmalak, N.S.; Badawi, A.; Elbayoumy, T.; Sabry, N.; El Ramly, A. Tretinoin-loaded liposomal formulations: from lab to comparative clinical study in acne patients. Drug Deliv., 2016, 23(4), 1184-1193.
[64]
Skalko, N.; Cajkovac, M.; Jalsenjak, I. Liposomes with clindamycin hydrochloride in the therapy of acne vulgaris. Int. J. Pharm., 1992, 85(1-3), 97-101.
[65]
Honzak, L.; Sentjurc, M. Development of liposome encapsulated clindamycin for treatment of acne vulgaris. Pflugers Arch., 2000, 440(Suppl. 1), R044-R045.
[66]
Chorachoo, J.; Amnuaikit, T.; Voravuthikunchai, S.P. Liposomal encapsulated rhodomyrtone: A novel antiacne drug. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-7.
[67]
Yang, D.; Pornpattananangkul, D.; Nakatsuji, T.; Chan, M.; Carson, D.; Huang, C.M.; Zhang, L. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials, 2009, 30(30), 6035-6040.
[68]
Fluhr, J.W.; Barsom, O.; Gehring, W.; Gloor, M. Antibacterial efficacy of benzoyl peroxide in phospholipid liposomes. A vehicle-controlled, comparative study in patients with papulopustular acne. Dermatology, 1999, 198(3), 273-277.
[69]
Xu, H.; Delling, M.; Jun, J.C.; Clapham, D.E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci., 2006, 9(5), 628-635.
[70]
Kumar, R.; Singh, B.; Bakshi, G.; Katare, O.P. Development of liposomal systems of finasteride for topical applications: design, characterization, and in vitro evaluation. Pharm. Dev. Technol., 2007, 12(6), 591-601.
[71]
Verma, A.K.; Bindal, M.C. A vital role of niosomes on controlled and novel drug delivery. Indian J. Nov. Drug Deliv., 2011, 3(4), 238-246.
[72]
Sunilkumar, M.R. AdlinJinoNesalin, J.; Tamizh Mani, T. Niosome asanovel drug delivery system-review. Int. Res. J. Pharm. App. Sci, 2015, 5(3), 1-7.
[73]
Sankhyan, A.; Pawar, P. Recent trends in niosome as vesicular drug delivery system. J. Appl. Pharm. Sci., 2012, 2(6), 20-32.
[74]
Vyas, J.; Vyas, P.; Raval, D.; Paghdar, P. Development of topical niosomal gel of benzoyl peroxide. Int. Sch. Res. Notices. Nanotechnol, 2011, 2011, 1-6.
[75]
Qureshi, S.R.; Sahni, Y.P.; Singh, S.K.; Bhat, M.A.; Dar, A.A.; Quadri, S.A. Nanotechnology based drug delivery system. J. Pharm. Res. Opin., 2011, 1, 161-165.
[76]
Shilakari, G.; Singh, D.; Asthana, A. Novel vesicular carriers for topical drug delivery and their application’s. Int. J. Pharm. Sci. Rev. Res., 2013, 21(1), 77-86.
[77]
Budhiraja, A.; Dhingra, G. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv., 2015, 22(6), 723-730.
[78]
Gupta, A.; Singh, S.; Kotla, N.G.; Webster, T.J. Formulation and evaluation of a topical niosomal gel containing a combination of benzoyl peroxide and tretinoin for antiacne activity. Int. J. Nanomedicine, 2015, 10, 171-182.
[79]
Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(3), 274-282.
[80]
Yu, Z.; Lv, H.; Han, G.; Ma, K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One, 2016, 11(7), e0159967.
[81]
Esposito, E.; Menegatti, E.; Cortesi, R. Ethosomes and liposomes as topical vehicles for azelaic acid: a preformulation study. J. Cosmet. Sci., 2004, 55(3), 253-264.
[82]
El Zaafarany, G.M.; Awad, G.A.; Holayel, S.M.; Mortada, N.D. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int. J. Pharm., 2010, 397(1-2), 164-172.
[83]
Fadel, M.; Samy, N.; Nasr, M.; Alyoussef, A.A. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharm. Dev. Technol., 2017, 22(4), 545-550.
[84]
Rajan, R.; Jose, S.; Mukund, V.P.B.; Vasudevan, D.T. Transferosomes – A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
[85]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol., 2015, 6(219), 1-5.
[86]
Park, H.; Lee, J.; Jeong, S.; Im, B.N.; Kim, M.K.; Yang, S.G.; Na, K. Lipase-sensitive transfersomes based on photosensitizer/ polymerizable lipid conjugate for selective antimicrobial photodynamic therapy of acne. Adv. Health. Mater., 2016, 5(24), 3139-3147.
[87]
Fadel, M.; Kassab, K.; Samy, N.; Thabet, S. Indocyanine green transferosomal hydrogel with enhanced stability and skin permeation for treatment of acne vulgaris: In vitro and clinical study. Eur. J. Biomed. Pharm. Sci, 2015, 2(1), 20-36.
[88]
Gupta, M.; Prajapati, R.N.; Irchhaiya, R.; Singh, N.; Prajapati, S.K. Novel clindamycin loaded transfersomes formulation for effective management of acne. World. Res. J. Pharm. Res, 2017, 6(6), 765-773.
[89]
Caddeo, C.; Manconi, M.; Sinico, C.; Valenti, D.; Celia, C.; Monduzzi, M.; Fadda, A.M. Penetration enhancer-containing vesicles: Does the penetration enhancer structure affect topical drug delivery? Curr. Drug Targets, 2015, 16(3), 1438-1447.
[90]
Bseiso, E.A.; Nasr, M.; Sammour, O.A.; Abd El Gawad, N.A. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug Deliv., 2016, 23(8), 2813-2819.
[91]
Barakat, S.S.; Nasr, M.; Ahmed, R.F.; Badawy, S.S.; Mansour, S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci. Rep., 2017, 7(1), 9910.
[92]
Bsieso, E.A.; Nasr, M.; Moftah, N.H.; Sammour, O.A.; Abd El Gawad, N.A. Could nanovesicles containing a penetration enhancer clinically improve the therapeutic outcome in skin fungal diseases? Nanomedicine (Lond.), 2015, 10(13), 2017-2031.
[93]
Bavarsad, N.; Akhgari, A.; Seifmanesh, S.; Salimi, A.; Rezaie, A. Statistical optimization of tretinoin-loaded penetration-enhancer vesicles (PEV) for topical delivery. DARUJ. Pharm. Sci, 2016, 24(7), 1-12.