[1]
Crichton, R.R.; Boelaert, J.R. Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences; John Wiley & Sons, 2001, pp. 190-197.
[2]
Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol., 2001, 33(10), 940-959.
[3]
Koppenol, W.H. The Haber-Weiss cycle--70 years later. Redox Rep., 2001, 6(4), 229-234.
[4]
Crisponi, G.; Remelli, M. Iron chelating agents for the treatment of iron overload. Coord. Chem. Rev., 2008, 252(10), 1225-1240.
[5]
Chaston, T.B.; Richardson, D.R. Iron chelators for the treatment of iron overload disease: relationship between structure, redox activity, and toxicity. Am. J. Hematol., 2003, 73(3), 200-210.
[6]
Hamilton, J.L.J. Innovative polymeric iron chelators with iron binding affinity and biocompatibility for the treatment of transfusional iron overlo. Doctoral disseration, University of British Columbia: Vancouver, April, 2015.
[7]
Golenser, J.; Domb, A.; Teomim, D.; Tsafack, A.; Nisim, O.; Ponka, P.; Eling, W.; Cabantchik, Z.I. The treatment of animal models of malaria with iron chelators by use of a novel polymeric device for slow drug release. J. Pharmacol. Exp. Ther., 1997, 281(3), 1127-1135.
[8]
Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc., 1963, 85(22), 3533-3539.
[9]
Richardson, D.; Bernhardt, P.V.; Becker, E.M. Iron chelators and uses thereof., US Patent 698939-7B1, 2006.
[10]
Hershko, C.; Graham, G.; Bates, G.W.; Rachmilewitz, E.A. Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br. J. Haematol., 1978, 40(2), 255-263.
[11]
Hoffbrand, A.V.; Taher, A.; Cappellini, M.D. How I treat transfusional iron overload. Blood, 2012, 120(18), 3657-3669.
[12]
Manning, T.; Kean, G.; Thomas, J.; Thomas, K.; Corbitt, M.; Gosnell, D.; Ware, R.; Fulp, S.; Jarrard, J.; Phillips, D. Iron chelators in medicinal applications - chemical equilibrium considerations in pharmaceutical activity. Curr. Med. Chem., 2009, 16(19), 2416-2429.
[13]
Morehouse, L.A.; Thomas, C.E.; Aust, S.D. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation. Arch. Biochem. Biophys., 1984, 232(1), 366-377.
[14]
Porter, J.B.; Garbowski, M. The pathophysiology of transfusional iron overload. Hematol. Oncol. Clin. North Am., 2014, 28(4), 683-701. [vi.].
[15]
Brittenham, G.M. Iron-chelating therapy for transfusional iron overload. N. Engl. J. Med., 2011, 364(2), 146-156.
[16]
Borgna-Pignatti, C.; Rugolotto, S.; De Stefano, P.; Zhao, H.; Cappellini, M.D.; Del Vecchio, G.C.; Romeo, M.A.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R.; Piga, A.; Cnaan, A. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica, 2004, 89(10), 1187-1193.
[17]
Liu, Z.D.; Hider, R.C. Design of iron chelators with therapeutic application. Coord. Chem. Rev., 2002, 232(1), 151-171.
[18]
Hershko, C.; Link, G.; Konijn, A.M.; Cabantchik, Z.I. Objectives and mechanism of iron chelation therapy. Ann. N. Y. Acad. Sci., 2005, 1054(1), 124-135.
[19]
Modell, B.; Khan, M.; Darlison, M. Survival in β-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet, 2000, 355(9220), 2051-2052.
[20]
Lee, P.; Mohammed, N.; Marshall, L.; Abeysinghe, R.D.; Hider, R.C.; Porter, J.B.; Singh, S. Intravenous infusion pharmacokinetics of desferrioxamine in thalassaemic patients. Drug Metab. Dispos., 1993, 21(4), 640-644.
[21]
Porter, J.B.; Faherty, A.; Stallibrass, L.; Brookman, L.; Hassan, I.; Howes, C. A trial to investigate the relationship between DFO pharmacokinetics and metabolism and DFO-related toxicity. Ann. N. Y. Acad. Sci., 1998, 850(1), 483-487.
[22]
Levine, J.E.; Cohen, A.; MacQueen, M.; Martin, M.; Giardina, P.J. Sensorimotor neurotoxicity associated with high-dose deferoxamine treatment. J. Pediatr. Hematol. Oncol., 1997, 19(2), 139-141.
[23]
Kontoghiorghes, G.J.; Eracleous, E.; Economides, C.; Kolnagou, A. Advances in iron overload therapies. prospects for effective use of deferiprone (L1), deferoxamine, the new experimental chelators ICL670, GT56-252, L1NA11 and their combinations. Curr. Med. Chem., 2005, 12(23), 2663-2681.
[24]
Kontoghiorghes, G.J.; Aldouri, M.A.; Hoffbrand, A.V.; Barr, J.; Wonke, B.; Kourouclaris, T.; Sheppard, L. Effective chelation of iron in beta thalassaemia with the oral chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Br. Med. J. (Clin. Res. Ed.), 1987, 295(6612), 1509-1512.
[25]
Hoffbrand, A.V.; Cohen, A.; Hershko, C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood, 2003, 102(1), 17-24.
[26]
Hoffbrand, A.V. AL-Refaie, F.; Davis, B.; Siritanakatkul, N.; Jackson, B.F.; Cochrane, J.; Prescott, E.; Wonke, B. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood, 1998, 91(1), 295-300.
[27]
Galanello, R. Deferiprone in the treatment of transfusion-dependent thalassemia: a review and perspective. Ther. Clin. Risk Manag., 2007, 3(5), 795-805.
[28]
Nisbet-Brown, E.; Olivieri, N.F.; Giardina, P.J.; Grady, R.W.; Neufeld, E.J.; Séchaud, R.; Krebs-Brown, A.J.; Anderson, J.R.; Alberti, D.; Sizer, K.C.; Nathan, D.G. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet, 2003, 361(9369), 1597-1602.
[29]
Cappellini, M.D. Iron-chelating therapy with the new oral agent ICL670 (Exjade). Best Pract. Res. Clin. Haematol., 2005, 18(2), 289-298.
[30]
Nick, H.; Allegrini, P.R.; Fozard, L.; Junker, U.; Rojkjaer, L.; Salie, R.; Niederkofler, V.; O’Reilly, T. Deferasirox reduces iron overload in a murine model of juvenile hemochromatosis. Exp. Biol. Med. (Maywood), 2009, 234(5), 492-503.
[31]
Galanello, R.; Piga, A.; Alberti, D.; Rouan, M.C.; Bigler, H.; Séchaud, R. Safety, tolerability, and pharmacokinetics of ICL670, a new orally active iron-chelating agent in patients with transfusion-dependent iron overload due to β-thalassemia. J. Clin. Pharmacol., 2003, 43(6), 565-572.
[32]
Sánchez-González, P.D.; López-Hernandez, F.J.; Morales, A.I.; Macías-Nuñez, J.F.; López-Novoa, J.M. Effects of deferasirox on renal function and renal epithelial cell death. Toxicol. Lett., 2011, 203(2), 154-161.
[33]
Galanello, R.; Campus, S.; Origa, R. Deferasirox: pharmacokinetics and clinical experience. Expert Opin. Drug Metab. Toxicol., 2012, 8(1), 123-134.
[34]
Kontoghiorghes, G.J. A record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Expert Opin. Drug Saf., 2013, 12(5), 605-609.
[35]
Riva, A. A record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds? Expert Opin. Drug Saf., 2013, 12(5), 793-794.
[36]
Zhou, T.; Kong, X.L.; Liu, Z.D.; Liu, D.Y.; Hider, R.C. Synthesis and iron(III)-chelating properties of novel 3-hydroxypyridin-4-one hexadentate ligand-containing copolymers. Biomacromolecules, 2008, 9(5), 1372-1380.
[37]
Zhou, T.; Winkelmann, G.; Dai, Z.Y.; Hider, R.C. Design of clinically useful macromolecular iron chelators. J. Pharm. Pharmacol., 2011, 63(7), 893-903.
[38]
Mahoney, J.R., Jr; Hallaway, P.E.; Hedlund, B.E.; Eaton, J.W. Acute iron poisoning. Rescue with macromolecular chelators. J. Clin. Invest., 1989, 84(4), 1362-1366.
[39]
Feng, M.H.; van der Does, L.; Bantjes, A. Iron (III)-chelating resins. 3. Synthesis, iron (III)-chelating properties, and in vitro antibacterial activity of compounds containing 3-hydroxy-2-methyl-4(1H)-pyridinone ligands. J. Med. Chem., 1993, 36(19), 2822-2827.
[40]
Horowitz, D.; Margel, S.; Shimoni, T. Iron detoxification by haemoperfusion through deferoxamine-conjugated agarose-polyacrolein microsphere beads. Biomaterials, 1985, 6(1), 9-16.
[41]
Rossi, N.A.; Mustafa, I.; Jackson, J.K.; Burt, H.M.; Horte, S.A.; Scott, M.D.; Kizhakkedathu, J.N. In vitro chelating, cytotoxicity, and blood compatibility of degradable poly(ethylene glycol)-based macromolecular iron chelators. Biomaterials, 2009, 30(4), 638-648.
[42]
Imran ul-haq, M. Design of long circulating nontoxic dendritic polymers for the removal of iron in vivo. ACS Nano, 2013, 7(12), 10704-10716.
[43]
Hauser, C.; Renfrow, W. Benzohydroxamic acid. Org. Synth., 1939, 1(2), 15-15.
[44]
Nishino, N.; Powers, J.C. Peptide hydroxamic acids as inhibitors of thermolysin. Biochemistry, 1978, 17(14), 2846-2850.
[45]
Kurzak, B.; Kozłowski, H.; Farkas, E. Hydroxamic and aminohydroxamic acids and their complexes with metal ions. Coord. Chem. Rev., 1992, 114(2), 169-200.
[46]
Huang, L.; Pardee, A.B. Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol. Med., 2000, 6(10), 849-866.
[47]
Holmes, M.A.; Matthews, B.W. Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis. Biochemistry, 1981, 20(24), 6912-6920.
[48]
Parvathy, S.; Hussain, I.; Karran, E.H.; Turner, A.J.; Hooper, N.M. Alzheimer’s amyloid precursor protein α-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochemistry, 1998, 37(6), 1680-1685.
[49]
Polomoscanik, S.C.; Cannon, C.P.; Neenan, T.X.; Holmes-Farley, S.R.; Mandeville, W.H.; Dhal, P.K. Hydroxamic acid-containing hydrogels for nonabsorbed iron chelation therapy: synthesis, characterization, and biological evaluation. Biomacromolecules, 2005, 6(6), 2946-2953.
[50]
Halliwell, B. Lipid peroxidation: A radical chain reaction. . Free Radic. Biol. Med., 1989, 112-137.
[51]
Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med., 1999, 341(26), 1986-1995.
[52]
Brittenham, G. Disorders of iron metabolism: iron deficiency
and overload. ematology: basic principles and
practice,, 2000. 115-146.
[53]
Liu, Z.; Wang, Y.; Purro, M.; Xiong, M.P. Oxidation-induced degradable nanogels for iron chelation. Sci. Rep., 2016, 6, 20923.
[54]
Qian, J. Nonabsorbable iron binding polymers prevent dietary iron absorption for the treatment of iron overload. ACS Macro Lett., 2017, 6(4), 350-353.
[55]
Tyagi, P.; Kumar, A.; Gupta, D.; Singh, H. Decorporation of iron metal using dialdehyde cellulose-deferoxamine microcarrier. AAPS PharmSciTech, 2017, 18(1), 156-165.
[56]
Wang, N.; Jin, X.; Guo, D.; Tong, G.; Zhu, X. Iron chelation nanoparticles with delayed saturation as an effective therapy for Parkinson disease. Biomacromolecules, 2017, 18(2), 461-474.
[57]
Liu, G.; Men, P.; Kudo, W.; Perry, G.; Smith, M.A. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neurosci. Lett., 2009, 455(3), 187-190.
[58]
Başar, I.; Ayhan, A.; Bircan, K.; Ergen, A.; Taşar, C. Transferrin receptor activity as a marker in transitional cell carcinoma of the bladder. Br. J. Urol., 1991, 67(2), 165-168.
[59]
Keer, H.N.; Kozlowski, J.M.; Tsai, Y.C.; Lee, C.; McEwan, R.N.; Grayhack, J.T. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J. Urol., 1990, 143(2), 381-385.
[60]
Faulk, W.P.; Hsi, B-L.; Stevens, P.J. Transferrin and transferrin receptors in carcinoma of the breast. Lancet, 1980, 2(8191), 390-392.
[61]
Buss, J.L.; Greene, B.T.; Turner, J.; Torti, F.M.; Torti, S.V. Iron chelators in cancer chemotherapy. Curr. Top. Med. Chem., 2004, 4(15), 1623-1635.
[62]
Theerasilp, M. Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Advances, 2017, 7(18), 11158-11169.
[63]
Hallaway, P.E.; Eaton, J.W.; Panter, S.S.; Hedlund, B.E. Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc. Natl. Acad. Sci. USA, 1989, 86(24), 10108-10112.
[64]
Harmatz, P.; Grady, R.W.; Dragsten, P.; Vichinsky, E.; Giardina, P.; Madden, J.; Jeng, M.; Miller, B.; Hanson, G.; Hedlund, B. Phase Ib clinical trial of starch-conjugated deferoxamine (40SD02): a novel long-acting iron chelator. Br. J. Haematol., 2007, 138(3), 374-381.
[65]
Hamilton, J.L.; Imran Ul-Haq, M.; Abbina, S.; Kalathottukaren, M.T.; Lai, B.F.; Hatef, A.; Unniappan, S.; Kizhakkedathu, J.N. In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials, 2016, 102, 58-71.
[66]
Li, J. Macromolecular iron-chelators via RAFT-polymerization for the inhibition of methicillin-resistant Staphylococcus aureus growth. Polymer (Guildf.), 2016, 87, 64-72.
[67]
Power Coombs, M.R.; Grant, T.; Greenshields, A.L.; Arsenault, D.J.; Holbein, B.E.; Hoskin, D.W. Inhibitory effect of iron withdrawal by chelation on the growth of human and murine mammary carcinoma and fibrosarcoma cells. Exp. Mol. Pathol., 2015, 99(2), 262-270.