[1]
Goes AMOJ, Mascarenhas BI, Rodrigues SC, de Andrade MC, Franco RSM. Thoracic and abdominal aneurysms as incidental findings. J Vasc Bras 2016; 15: 106-12.
[2]
Elefteriades JA. Thoracic aortic aneurysm: Reading the enemy’s playbook. Yale J Biol Med 2008; 81: 175-86.
[3]
Bruemmer D, Daugherty A, Lu H, Rateri DL. Relevance of angiotensin II-induced aortic pathologies in mice to human aortic aneurysms. Ann N Y Acad Sci 2011; 1245: 7-10.
[4]
Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 2011; 473: 308-16.
[5]
El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 2009; 6: 771-86.
[6]
Buxton DB. Molecular imaging of aortic aneurysms. Circ Cardiovasc Imaging 2012; 5: 392-9.
[7]
Cornuz J, Sidoti Pinto C, Tevaearai H, Egger M. Risk factors for asymptomatic abdominal aortic aneurysm: Systematic review and meta-analysis of population-based screening studies. Eur J Public Health 2004; 14: 343-9.
[8]
Kaschina E, Scholz H, Steckelings UM, et al. Transition from atherosclerosis to aortic aneurysm in humans coincides with an increased expression of RAS components. Atherosclerosis 2009; 205: 396-403.
[9]
Agmon Y, Khandheria BK, Meissner I, et al. Is aortic dilatation an atherosclerosis-related process? Clinical, laboratory, and transesophageal echocardiographic correlates of thoracic aortic dimensions in the population with implications for thoracic aortic aneurysm formation. J Am Coll Cardiol 2003; 42: 1076-83.
[10]
Nakashima Y, Kurozumi T, Sueishi K, Tanaka K. Dissecting aneurysm: A clinicopathologic and histopathologic study of 111 autopsied cases. Hum Pathol 1990; 21: 291-6.
[11]
Achneck H, Modi B, Shaw C, et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest 2005; 128: 1580-6.
[12]
Hung A, Zafar M, Mukherjee S, Tranquilli M, Scoutt LM, Elefteriades JA. Carotid intima-media thickness provides evidence that ascending aortic aneurysm protects against systemic atherosclerosis. Cardiology 2012; 123: 71-7.
[13]
Chau K, Elefteriades JA. Ascending thoracic aortic aneurysms protect against myocardial infarctions. Int J Angiol 2014; 23: 177-82.
[14]
Mordi I, Tzemos N. Bicuspid aortic valve disease: A comprehensive review. Cardiol Res Pract 2012; 2012196037
[15]
Kang SS, Littooy FN, Gupta SR, et al. Higher prevalence of abdominal aortic aneurysms in patients with carotid stenosis but without diabetes. Surgery 1999; 126: 687-91.
[16]
Maleki S, Bjorck HM, Folkersen L, et al. Identification of a novel flow-mediated gene expression signature in patients with bicuspid aortic valve. J Mol Med (Berl) 2013; 91: 129-39.
[17]
Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol 2010; 55: 2789-800.
[18]
Paloschi V, Gadin JR, Khan S, et al. Aneurysm development in patients with a bicuspid aortic valve is not associated with transforming growth factor-beta activation. Arterioscler Thromb Vasc Biol 2015; 35: 973-80.
[19]
Folkersen L, Wagsater D, Paloschi V, et al. Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: The ASAP study. Mol Med 2011; 17: 1365-73.
[20]
McNally A, Madan A, Sucosky P. Morphotype-dependent flow characteristics in bicuspid aortic valve ascending aortas: A benchtop particle image velocimetry study. Front Physiol 2017; 8: 44.
[21]
Golledge J, Karan M, Moran CS, et al. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions. Eur Heart J 2008; 29: 665-72.
[22]
Miyama N, Dua MM, Yeung JJ, et al. Hyperglycemia limits experimental aortic aneurysm progression. J Vasc Surg 2010; 52: 975-83.
[23]
Tsai CL, Lin CL, Wu YY, Shieh DC, Sung FC, Kao CH. Advanced complicated diabetes mellitus is associated with a reduced risk of thoracic and abdominal aortic aneurysm rupture: A population-based cohort study. Diabetes Metab Res Rev 2015; 31: 190-7.
[24]
Radak D, Tanaskovic S, Katsiki N, Isenovic ER. Protective role of diabetes mellitus on abdominal aortic aneurysm pathogenesis: Myth or reality? Curr Vasc Pharmacol 2016; 14: 196-200.
[25]
Climent E, Benaiges D, Chillaron JJ, Flores-Le Roux JA, Pedro-Botet J. Diabetes mellitus as a protective factor of abdominal aortic aneurysm: Possible mechanisms. Clin Investig Arterioscler 2018; 30: 181-7.
[26]
Pafili K, Gouni-Berthold I, Papanas N, Mikhailidis DP. Abdominal aortic aneurysms and diabetes mellitus. J Diabetes Complications 2015; 29: 1330-6.
[27]
Larsson SC, Wallin A, Hakansson N, Stackelberg O, Back M, Wolk A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int J Cardiol 2018; 262: 66-70.
[28]
Prakash SK, Pedroza C, Khalil YA, Milewicz DM. Diabetes and reduced risk for thoracic aortic aneurysms and dissections: A nationwide case-control study. J Am Heart Assoc 2012; 1(2): pii: jah3-e000323.
[29]
Guo DC, Papke CL, He R, Milewicz DM. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci 2006; 1085: 339-52.
[30]
Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006; 114: 597-605.
[31]
Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 2003; 21: 3-12.
[32]
Susic D, Varagic J, Ahn J, Frohlich ED. Crosslink breakers: A new approach to cardiovascular therapy. Curr Opin Cardiol 2004; 19: 336-40.
[33]
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 2014; 18: 1-14.
[34]
Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. J R Soc Interface 2013; 1020121004
[35]
Wagsater D, Paloschi V, Hanemaaijer R, et al. Impaired collagen biosynthesis and cross-linking in aorta of patients with bicuspid aortic valve. J Am Heart Assoc 2013; 2e000034
[36]
Norman PE, Davis TM, Le MT, Golledge J. Matrix biology of abdominal aortic aneurysms in diabetes: Mechanisms underlying the negative association. Connect Tissue Res 2007; 48: 125-31.
[37]
Koole D, van Herwaarden JA, Schalkwijk CG, et al. A potential role for glycated cross-links in abdominal aortic aneurysm disease. J Vasc Surg 2017; 65: 1493-503.
[38]
Lee VS, Halabi CM, Hoffman EP, et al. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc Natl Acad Sci USA 2016; 113: 8759-64.
[39]
LeMaire SA, Wang X, Wilks JA, et al. Matrix metalloproteinases in ascending aortic aneurysms: Bicuspid versus trileaflet aortic valves. J Surg Res 2005; 123: 40-8.
[40]
Fujimura N, Xiong J, Kettler EB, et al. Metformin treatment status and abdominal aortic aneurysm disease progression. J Vasc Surg 2016; 64: 46-54.
[41]
Torsney E, Pirianov G, Cockerill GW. Diabetes as a negative risk factor for abdominal aortic aneurysm - does the disease aetiology or the treatment provide the mechanism of protection? Curr Vasc Pharmacol 2013; 11: 293-8.
[42]
Yu J, Morimoto K, Bao W, Yu Z, Okita Y, Okada K. Glucagon-like peptide-1 prevented abdominal aortic aneurysm development in rats. Surg Today 2016; 46: 1099-107.
[43]
Lu HY, Huang CY, Shih CM, et al. Dipeptidyl peptidase-4 inhibitor decreases abdominal aortic aneurysm formation through GLP-1-dependent monocytic activity in mice. PLoS One 2015; 10e0121077
[44]
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-57.
[45]
Kuhre RE, Holst JJ, Kappe C. The regulation of function, growth and survival of GLP-1-producing L-cells. Clin Sci (Lond) 2016; 130: 79-91.
[46]
Vilsboll T, Holst JJ. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 2004; 47: 357-66.
[47]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409-39.
[48]
Elrick H, Stimmler L, Hlad CJ, Arai Y. plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964; 24: 1076-82.
[49]
Meier JJ, Nauck MA. Glucagon-Like Peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev 2005; 21: 91-117.
[50]
Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7-36) amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 1999; 140: 5356-63.
[51]
Sandoval D, Sisley SR. Brain GLP-1 and insulin sensitivity. Mol Cell Endocrinol 2015; 418: 27-32.
[52]
Kang YM, Jung CH. Cardiovascular effects of glucagon-like peptide-1 receptor agonists. Endocrinol Metab (Seoul) 2016; 31: 258-74.
[53]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-22.
[54]
Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377: 1228-39.
[55]
Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373: 2247-57.
[56]
Bao W, Morimoto K, Hasegawa T, et al. Orally administered dipeptidyl peptidase-4 inhibitor (alogliptin) prevents abdominal aortic aneurysm formation through an antioxidant effect in rats. J Vasc Surg 2014; 59: 1098-108.
[57]
Takahara Y, Tokunou T, Ichiki T. Suppression of abdominal aortic aneurysm formation in mice by teneligliptin, a dipeptidyl peptidase-4 inhibitor. J Atheroscler Thromb 2018; 25: 698-708.
[58]
Nystrom T, Gonon AT, Sjoholm A, Pernow J. Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept 2005; 125: 173-7.
[59]
Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004; 287: 1209-15.
[60]
Richter G, Feddersen O, Wagner U, Barth P, Goke R, Goke B. GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol 1993; 265: 374-81.
[61]
Okerson T, Yan P, Stonehouse A, Brodows R. Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens 2010; 23: 334-9.
[62]
Cardus A, Uryga AK, Walters G, Erusalimsky JD. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res 2013; 97: 571-9.
[63]
Balestrieri ML, Rizzo MR, Barbieri M, et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of incretin treatment. Diabetes 2015; 64: 1395-406.
[64]
Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. mediators inflamm. 2016; 2016: 3094642.
[65]
Lee WY. New potential targets of glucagon-like peptide 1 receptor agonists in pancreatic beta-cells and hepatocytes. Endocrinol Metab 2017; 32: 1-5.
[66]
Ceriello A, La Sala L, De Nigris V, Pujadas G, Rondinelli M, Genovese S. GLP-1 reduces metalloproteinase-9 induced by both hyperglycemia and hypoglycemia in type 1 diabetes. The possible role of oxidative stress. Ther Clin Risk Manag 2015; 11: 901-3.
[67]
Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 2010; 59: 1030-7.
[68]
Fadini GP, Boscaro E, Albiero M, et al. The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: Ppossible role of stromal-derived factor-1alpha. Diabetes Care 2010; 33: 1607-9.
[69]
Tashiro Y, Sato K, Watanabe T, et al. A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 2014; 54: 19-26.
[70]
Ma GF, Chen S, Yin L, Gao XD, Yao WB. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-kappaB pathway. Acta Pharmacol Sin 2014; 35: 195-202.
[71]
Burgmaier M, Liberman A, Mollmann J, et al. Glucagon-Like Peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe(-)/(-) mice. Atherosclerosis 2013; 231: 427-35.
[72]
Bloomgarden ZT. Incretin concepts. Diabetes Care 2010; 33: e20-5.
[73]
Kappe C, Zhang Q, Holst JJ, Nystrom T, Sjoholm A. Evidence for paracrine/autocrine regulation of GLP-1-producing cells. Am J Physiol Cell Physiol 2013; 305: C1041-9.
[74]
Phillippi JA, Eskay MA, Kubala AA, Pitt BR, Gleason TG. Altered oxidative stress responses and increased type I collagen expression in bicuspid aortic valve patients. Ann Thorac Surg 2010; 90: 1893-8.
[75]
Li DY, Brooke B, Davis EC, et al. Elastin is an essential determinant of arterial morphogenesis. Nature 1998; 393: 276-80.
[76]
Qa’aty N, Wang Y, Wang A, et al. The antidiabetic hormone glucagon-like peptide-1 induces formation of new elastic fibers in human cardiac fibroblasts after cross-activation of IGF-IR. Endocrinology 2015; 156: 90-102.
[77]
Wright EJ, Hodson NW, Sherratt MJ, et al. Combined MSC and GLP-1 therapy modulates collagen remodeling and apoptosis following myocardial infarction. Stem Cells Int 2016; 20167357096
[78]
Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab 2018; 27: 740-56.
[79]
Mannucci E, Ognibene A, Cremasco F, et al. Glucagon-Like Peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus. Diabet Med 2000; 17: 713-9.
[80]
Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50: 609-13.
[81]
Lugari R, Dei Cas A, Ugolotti D, et al. Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non insulin-dependent) diabetes. Horm Metab Res 2002; 34: 150-4.
[82]
Ahren B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam Horm 2010; 84: 203-20.
[83]
Vollmer K, Holst JJ, Baller B, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 2008; 57: 678-87.
[84]
Krizhanovskii C, Ntika S, Olsson C, Eriksson P, Franco-Cereceda A. Elevated circulating fasting glucagon-like peptide-1 in surgical patients with aortic valve disease and diabetes. Diabetol Metab Syndr 2017; 9: 79.
[85]
Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 1987; 84: 3434-8.
[86]
Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 1995; 16: 390-410.
[87]
Holz GG. EPAC: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004; 53: 5-13.
[88]
Kahles F, Meyer C, Mollmann J, et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 2014; 63: 3221-9.
[89]
Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol 2013; 48: 322-32.
[90]
Kappe C, Zhang Q, Nystrom T, Sjoholm A. Effects of high-fat diet and the anti-diabetic drug metformin on circulating GLP-1 and the relative number of intestinal L-cells. Diabetol Metab Syndr 2014; 6: 70.
[91]
Wu T, Thazhath SS, Bound MJ, Jones KL, Horowitz M, Rayner CK. Mechanism of increase in plasma intact GLP-1 by metformin in type 2 diabetes: Stimulation of GLP-1 secretion or reduction in plasma DPP-4 activity? Diabetes Res Clin Pract 2014; 106: e3-6.
[92]
Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 2011; 152: 4610-9.
[93]
Hinchliffe RJ. Metformin and abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2017; 54: 679-80.
[94]
Lysgaard Poulsen J, Stubbe J, Lindholt JS. Animal models used to explore abdominal aortic aneurysms: A systematic review. Eur J Vasc Endovasc Surg 2016; 52: 487-99.
[95]
Gertz SD, Mintz Y, Beeri R, et al. Lessons from animal models of arterial aneurysm. Aorta (Stamford) 2013; 1: 244-54.