[2]
Saisho, Y. Prevention of beta cell “karoshi”: A new paradigm for prevention and management of type 2 diabetes. Med. Res. Arch., 2016, 4(6), 1-19.
[3]
Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet, 2014, 383(9911), 69-82.
[4]
Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988, 37(12), 1595-1607.
[5]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110.
[6]
Rahier, J.; Guiot, Y.; Goebbels, R.M.; Sempoux, C.; Henquin, J.C. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab., 2008, 10(Suppl. 4), 32-42.
[7]
Yoon, K.H.; Ko, S.H.; Cho, J.H.; Lee, J.M.; Ahn, Y.B.; Song, K.H.; Yoo, S.J.; Kang, M.I.; Cha, B.Y.; Lee, K.W.; Son, H.Y.; Kang, S.K.; Kim, H.S.; Lee, I.K.; Bonner-Weir, S. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab., 2003, 88(5), 2300-2308.
[8]
Sakuraba, H.; Mizukami, H.; Yagihashi, N.; Wada, R.; Hanyu, C.; Yagihashi, S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia, 2002, 45(1), 85-96.
[9]
Inaishi, J.; Saisho, Y.; Sato, S.; Kou, K.; Murakami, R.; Watanabe, Y.; Kitago, M.; Kitagawa, Y.; Yamada, T.; Itoh, H. Effects of obesity and diabetes on alpha- and beta-cell mass in surgically resected human pancreas. J. Clin. Endocrinol. Metab., 2016, 101(7), 2874-2882.
[10]
Meier, J.J.; Bhushan, A.; Butler, A.E.; Rizza, R.A.; Butler, P.C. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: Indirect evidence for islet regeneration? Diabetologia, 2005, 48(11), 2221-2228.
[11]
Meier, J.J.; Bonadonna, R.C. Role of reduced beta-cell mass versus impaired beta-cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 2013, 36(Suppl. 2), S113-S119.
[12]
Robertson, R.P. Estimation of beta-cell mass by metabolic tests: Necessary, but how sufficient? Diabetes, 2007, 56(10), 2420-2424.
[13]
Meier, J.J.; Menge, B.A.; Breuer, T.G.; Muller, C.A.; Tannapfel, A.; Uhl, W.; Schmidt, W.E.; Schrader, H. Functional assessment of pancreatic beta-cell area in humans. Diabetes, 2009, 58(7), 1595-1603.
[14]
Cline, G.W.; Naganawa, M.; Chen, L.; Chidsey, K.; Carvajal-Gonzalez, S.; Pawlak, S.; Rossulek, M.; Zhang, Y.; Bini, J.; McCarthy, T.J.; Carson, R.E.; Calle, R.A. Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia, 2018, 61(12), 2598-2607.
[15]
Bergman, R.N.; Phillips, L.S.; Cobelli, C. Physiologic evaluation of factors controlling glucose tolerance in man: Measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest., 1981, 68(6), 1456-1467.
[16]
U.K. Prospective Diabetes Study Group. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: A progressive disease. Diabetes, 1995, 44(11), 1249-1258.
[17]
DeFronzo, R.A.; Abdul-Ghani, M.A. Preservation of beta-cell function: The key to diabetes prevention. J. Clin. Endocrinol. Metab., 2011, 96(8), 2354-2366.
[18]
Saisho, Y. Beta cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J. Diabetes, 2015, 6(1), 109-124.
[19]
Matthews, D.R.; Cull, C.A.; Stratton, I.M.; Holman, R.R.; Turner, R.C. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet. Med., 1998, 15(4), 297-303.
[20]
Kahn, S.E.; Lachin, J.M.; Zinman, B.; Haffner, S.M.; Aftring, R.P.; Paul, G.; Kravitz, B.G.; Herman, W.H.; Viberti, G.; Holman, R.R. Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes, 2011, 60(5), 1552-1560.
[21]
TODAY study group. effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and beta-cell function in today. Diabetes Care, 2013, 36(6), 1749-1757.
[22]
Leibowitz, G.; Cahn, A.; Bhatt, D.L.; Hirshberg, B.; Mosenzon, O.; Wei, C.; Jermendy, G.; Sheu, W.H.; Sendon, J.L.; Im, K.; Braunwald, E.; Scirica, B.M.; Raz, I. Impact of treatment with saxagliptin on glycaemic stability and beta-cell function in the SAVOR-TIMI 53 study. Diabetes Obes. Metab., 2015, 17(5), 487-494.
[23]
Saisho, Y.; Kou, K.; Tanaka, K.; Abe, T.; Kurosawa, H.; Shimada, A.; Meguro, S.; Kawai, T.; Itoh, H. Postprandial serum C-peptide to plasma glucose ratio as a predictor of subsequent insulin treatment in patients with type 2 diabetes. Endocr. J., 2011, 58(4), 315-322.
[24]
Saisho, Y.; Kou, K.; Tanaka, K.; Abe, T.; Shimada, A.; Kawai, T.; Itoh, H. Association between beta cell function and future glycemic control in patients with type 2 diabetes. Endocr. J., 2013, 60(4), 517-523.
[25]
Saisho, Y.; Tanaka, K.; Abe, T.; Kawai, T.; Itoh, H. Lower beta cell function relates to sustained higher glycated albumin to glycated hemoglobin ratio in Japanese patients with type 2 diabetes. Endocr. J., 2014, 61(2), 149-157.
[26]
Meier, J.J.; Breuer, T.G.; Bonadonna, R.C.; Tannapfel, A.; Uhl, W.; Schmidt, W.E.; Schrader, H.; Menge, B.A. Pancreatic diabetes manifests when beta cell area declines by approximately 65% in humans. Diabetologia, 2012, 55(5), 1346-1354.
[27]
Ritzel, R.A.; Butler, A.E.; Rizza, R.A.; Veldhuis, J.D.; Butler, P.C. Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care, 2006, 29(3), 717-718.
[28]
Saisho, Y.; Butler, A.E.; Manesso, E.; Elashoff, D.; Rizza, R.A.; Butler, P.C. b-Cell mass and turnover in humans: Effects of obesity and aging. Diabetes Care, 2013, 36(1), 111-117.
[29]
Polonsky, K.S.; Given, B.D.; Van Cauter, E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J. Clin. Invest., 1988, 81(2), 442-448.
[30]
Robertson, R.P. Antioxidant drugs for treating beta-cell oxidative stress in type 2 diabetes: Glucose-centric versus insulin-centric therapy. Discov. Med., 2010, 9(45), 132-137.
[31]
Scheuner, D.; Kaufman, R.J. The unfolded protein response: A pathway that links insulin demand with beta-cell failure and diabetes. Endocr. Rev., 2008, 29(3), 317-333.
[32]
Eizirik, D.L.; Cardozo, A.K.; Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev., 2008, 29(1), 42-61.
[33]
Supale, S.; Li, N.; Brun, T.; Maechler, P. Mitochondrial dysfunction in pancreatic beta cells. TEM, 2012, 23(9), 477-487.
[34]
Haataja, L.; Gurlo, T.; Huang, C.J.; Butler, P.C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev., 2008, 29(3), 303-316.
[35]
Hull, R.L.; Westermark, G.T.; Westermark, P.; Kahn, S.E. Islet amyloid: A critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab., 2004, 89(8), 3629-3643.
[36]
Dinarello, C.A.; Donath, M.Y.; Mandrup-Poulsen, T. Role of IL-1beta in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes., 2010, 17(4), 314-321.
[37]
Masini, M.; Bugliani, M.; Lupi, R.; del Guerra, S.; Boggi, U.; Filipponi, F.; Marselli, L.; Masiello, P.; Marchetti, P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia, 2009, 52(6), 1083-1086.
[38]
Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell, 2012, 150(6), 1223-1234.
[39]
Hunter, C.S.; Stein, R.W. Evidence for loss in identity, de-differentiation, and trans-differentiation of islet beta-cells in type 2 diabetes. Front. Genet., 2017, 8, 35.
[40]
Poitout, V.; Robertson, R.P. Glucolipotoxicity: Fuel excess and beta-cell dysfunction. Endocr. Rev., 2008, 29(3), 351-366.
[41]
Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Herman, W.H.; Holman, R.R.; Jones, N.P.; Kravitz, B.G.; Lachin, J.M.; O’Neill, M.C.; Zinman, B.; Viberti, G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med., 2006, 355(23), 2427-2443.
[42]
Weng, J.; Li, Y.; Xu, W.; Shi, L.; Zhang, Q.; Zhu, D.; Hu, Y.; Zhou, Z.; Yan, X.; Tian, H.; Ran, X.; Luo, Z.; Xian, J.; Yan, L.; Li, F.; Zeng, L.; Chen, Y.; Yang, L.; Yan, S.; Liu, J.; Li, M.; Fu, Z.; Cheng, H. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: A multicentre randomised parallel-group trial. Lancet, 2008, 371(9626), 1753-1760.
[43]
Gerstein, H.C.; Bosch, J.; Dagenais, G.R.; Diaz, R.; Jung, H.; Maggioni, A.P.; Pogue, J.; Probstfield, J.; Ramachandran, A.; Riddle, M.C.; Ryden, L.E.; Yusuf, S. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med., 2012, 367(4), 319-328.
[44]
Rise consortium. impact of insulin and metformin versus metformin alone on beta-cell function in youth with impaired glucose tolerance or recently diagnosed type 2 diabetes. Diabetes Care, 2018.
[45]
Del Prato, S.; Camisasca, R.; Wilson, C.; Fleck, P. Durability of the efficacy and safety of alogliptin compared with glipizide in type 2 diabetes mellitus: A 2-year study. Diabetes Obes. Metab., 2014, 16(12), 1239-1246.
[46]
Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006, 368(9548), 1696-1705.
[47]
Nauck, M.; Weinstock, R.S.; Umpierrez, G.E.; Guerci, B.; Skrivanek, Z.; Milicevic, Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care, 2014, 37(8), 2149-2158.
[48]
Ahren, B.; Masmiquel, L.; Kumar, H.; Sargin, M.; Karsbol, J.D.; Jacobsen, S.H.; Chow, F. Efficacy and safety of once-weekly semaglutide versus once-daily sitagliptin as an add-on to metformin, thiazolidinediones, or both, in patients with type 2 diabetes (SUSTAIN 2): A 56-week, double-blind, phase 3a, randomised trial. Lancet Diabetes Endocrinol., 2017, 5(5), 341-354.
[49]
Ferrannini, E.; Muscelli, E.; Frascerra, S.; Baldi, S.; Mari, A.; Heise, T.; Broedl, U.C.; Woerle, H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest., 2014, 124(2), 499-508.
[50]
Del Prato, S.; Nauck, M.; Duran-Garcia, S.; Maffei, L.; Rohwedder, K.; Theuerkauf, A.; Parikh, S. Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes. Metab., 2015, 17(6), 581-590.
[51]
Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; Steinberg, W.M.; Stockner, M.; Zinman, B.; Bergenstal, R.M.; Buse, J.B. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 311-322.
[52]
Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jodar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; Woo, V.; Hansen, O.; Holst, A.G.; Pettersson, J.; Vilsboll, T. Investigators, s.-. semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2016, 375(19), 1834-1844.
[53]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[54]
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; Group, C.P.C. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med., 2017, 377(7), 644-657.
[55]
American diabetes association, 8. pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2018. Diabetes Care, 2018, 41(Suppl. 1), S73-S85.
[56]
Nathan, D.M.; Buse, J.B.; Kahn, S.E.; Krause-Steinrauf, H.; Larkin, M.E.; Staten, M.; Wexler, D.; Lachin, J.M. Rationale and design of the glycemia reduction approaches in diabetes: A comparative effectiveness study (GRADE). Diabetes Care, 2013, 36(8), 2254-2261.
[57]
Wing, R.R. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: Four-year results of the Look AHEAD trial. Arch. Intern. Med., 2010, 170(17), 1566-1575.
[58]
Gregg, E.W.; Chen, H.; Wagenknecht, L.E.; Clark, J.M.; Delahanty, L.M.; Bantle, J.; Pownall, H.J.; Johnson, K.C.; Safford, M.M.; Kitabchi, A.E.; Pi-Sunyer, F.X.; Wing, R.R.; Bertoni, A.G. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA, 2012, 308(23), 2489-2496.
[59]
Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; Rodrigues, A.M.; Rehackova, L.; Adamson, A.J.; Sniehotta, F.F.; Mathers, J.C.; Ross, H.M.; McIlvenna, Y.; Stefanetti, R.; Trenell, M.; Welsh, P.; Kean, S.; Ford, I.; McConnachie, A.; Sattar, N.; Taylor, R. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet, 2018, 391(10120), 541-551.
[60]
Cefalu, W.T.; Rubino, F.; Cummings, D.E. Metabolic surgery for type 2 diabetes: Changing the landscape of diabetes care. Diabetes Care, 2016, 39(6), 857-860.
[61]
Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Nanni, G.; Castagneto, M.; Bornstein, S.; Rubino, F. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet, 2015, 386(9997), 964-973.
[62]
Nguyen, K.T.; Billington, C.J.; Vella, A.; Wang, Q.; Ahmed, L.; Bantle, J.P.; Bessler, M.; Connett, J.E.; Inabnet, W.B.; Thomas, A.; Ikramuddin, S.; Korner, J. Preserved insulin secretory capacity and weight loss are the predominant predictors of glycemic control in patients with type 2 diabetes randomized to roux-en-y gastric bypass. Diabetes, 2015, 64(9), 3104-3110.
[63]
Tuomilehto, J.; Lindstrom, J.; Eriksson, J.G.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; Salminen, V.; Uusitupa, M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 2001, 344(18), 1343-1350.
[64]
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 2002, 346(6), 393-403.
[65]
Li, G.; Zhang, P.; Wang, J.; An, Y.; Gong, Q.; Gregg, E.W.; Yang, W.; Zhang, B.; Shuai, Y.; Hong, J.; Engelgau, M.M.; Li, H.; Roglic, G.; Hu, Y.; Bennett, P.H. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the da qing diabetes prevention study: A 23-year follow-up study. Lancet Diabetes Endocrinol., 2014, 2(6), 474-480.
[66]
Diabetes Prevention Program Research. G. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The diabetes prevention program outcomes study. Lancet Diabetes Endocrinol., 2015, 3(11), 866-875.
[67]
Knowler, W.C.; Hamman, R.F.; Edelstein, S.L.; Barrett-Connor, E.; Ehrmann, D.A.; Walker, E.A.; Fowler, S.E.; Nathan, D.M.; Kahn, S.E. Prevention of type 2 diabetes with troglitazone in the diabetes prevention program. Diabetes, 2005, 54(4), 1150-1156.
[68]
Defronzo, R.A.; Tripathy, D.; Schwenke, D.C.; Banerji, M.; Bray, G.A.; Buchanan, T.A.; Clement, S.C.; Gastaldelli, A.; Henry, R.R.; Kitabchi, A.E.; Mudaliar, S.; Ratner, R.E.; Stentz, F.B.; Musi, N.; Reaven, P.D. Prevention of diabetes with pioglitazone in act now: Physiologic correlates. Diabetes, 2013, 62(11), 3920-3926.
[69]
Holman, R.R.; Coleman, R.L.; Chan, J.C.N.; Chiasson, J.L.; Feng, H.; Ge, J.; Gerstein, H.C.; Gray, R.; Huo, Y.; Lang, Z.; McMurray, J.J.; Ryden, L.; Schroder, S.; Sun, Y.; Theodorakis, M.J.; Tendera, M.; Tucker, L.; Tuomilehto, J.; Wei, Y.; Yang, W.; Wang, D.; Hu, D.; Pan, C. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol., 2017, 5(11), 877-886.
[70]
Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; Wilding, J.P.; Obesity, S.; Prediabetes, N.N.S.G. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med., 2015, 373(1), 11-22.
[71]
Frandsen, C.S.; Dejgaard, T.F.; Madsbad, S. Non-insulin drugs to treat hyperglycaemia in type 1 diabetes mellitus. Lancet Diabetes Endocrinol., 2016, 4(9), 766-780.
[72]
Yeung, R.O.; Hannah-Shmouni, F.; Niederhoffer, K.; Walker, M.A. Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes. Rev. Endocr. Metab. Disord., 2018.
[73]
Hattersley, A.T.; Patel, K.A. Precision diabetes: Learning from monogenic diabetes. Diabetologia, 2017, 60(5), 769-777.
[74]
Saisho, Y.; Miyakoshi, K.; Tanaka, M.; Shimada, A.; Ikenoue, S.; Kadohira, I.; Yoshimura, Y.; Itoh, H. Beta cell dysfunction and its clinical significance in gestational diabetes. Endocr. J., 2010, 57(11), 973-980.
[75]
Saisho, Y.; Miyakoshi, K.; Ikenoue, S.; Kasuga, Y.; Matsumoto, T.; Minegishi, K.; Yoshimura, Y.; Itoh, H. Marked decline in beta cell function during pregnancy leads to the development of glucose intolerance in Japanese women. Endocr. J., 2013, 60(4), 533-539.
[76]
Sone, H.; Ito, H.; Ohashi, Y.; Akanuma, Y.; Yamada, N. Obesity and type 2 diabetes in Japanese patients. Lancet, 2003, 361(9351), 85.
[77]
Araneta, M.R.G.; Kanaya, A.M.; Hsu, W.C.; Chang, H.K.; Grandinetti, A.; Boyko, E.J.; Hayashi, T.; Kahn, S.E.; Leonetti, D.L.; McNeely, M.J.; Onishi, Y.; Sato, K.K.; Fujimoto, W.Y. Optimum bmi cut points to screen asian americans for type 2 diabetes. Diabetes Care, 2015, 38(5), 814-820.
[78]
Koshizaka, M.; Lopes, R.D.; Newby, L.K.; Clare, R.M.; Schulte, P.J.; Tricoci, P.; Mahaffey, K.W.; Ogawa, H.; Moliterno, D.J.; Giugliano, R.P.; Huber, K.; James, S.; Harrington, R.A.; Alexander, J.H. Obesity, diabetes, and acute coronary syndrome: Differences between Asians and whites. Am. J. Med., 2017, 130(10), 1170-1176.
[79]
Kou, K.; Saisho, Y.; Satoh, S.; Yamada, T.; Itoh, H. Change in beta-cell mass in Japanese nondiabetic obese individuals. J. Clin. Endocrinol. Metab., 2013, 98(9), 3724-3730.
[80]
Sato, S.; Saisho, Y.; Inaishi, J.; Kou, K.; Murakami, R.; Yamada, T.; Itoh, H. Effects of glucocorticoid treatment on beta- and alpha-cell mass in japanese adults with and without diabetes. Diabetes, 2015, 64(8), 2915-2927.
[81]
Inaishi, J.; Saisho, Y. Ethnic similarities and differences in the relationship between beta cell mass and diabetes. J. Clin. Med., 2017, 6(12), 113.
[82]
Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes, 2015: A patient-centered approach: Update to a position statement of the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care, 2015, 38(1), 140-149.