Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Protective Effect of Alpha-Tocopherol in Deltamethrin Induced Immunotoxicity

Author(s): Anoop Kumar*, Ruchika Sharma, Divya Rana and Neelima Sharma*

Volume 19, Issue 2, 2019

Page: [171 - 184] Pages: 14

DOI: 10.2174/1871530318666180801144822

Price: $65

Abstract

Background and Objective: α-Tocopherol is the active form of vitamin E which has various biological functions. However, the exact molecular mechanism of its action is not fully understood. Thus, the main objective of the current study is to determine the contribution of α-tocopherol in counteraction of the apoptogenic signaling pathways induced by deltamethrin in murine thymocytes and splenocytes.

Methods and Results: Deltamethrin (25 µM) induces apoptosis at 18 h through the activation of reactive oxygen species, caspases and depletion of glutathione in thymocytes and splenocytes. MTT assay results have shown that α-tocopherol (10 and 50 µg/ml) when added along with Deltamethrin (25µM), increases the viability of thymocytes and splenocytes in a concentration-dependent manner. The α-tocopherol treatment reduces the early markers of cell death (ROS and caspase3 activation) significantly. Further, the depleted GSH by deltamethrin has also been restored by α-tocopherol. At 18 h, α-tocopherol (50 µg/ml) significantly reduced the Deltamethrin induced cell death. In additional, phenotyping and cytokines assay have demonstrated that alpha-tocopherol significantly ameliorated the altered immune functions.

Conclusion: These findings indicate that α-tocopherol shows immunoprotective effects in Deltamethrin induced splenic and thymic apoptosis by inhibiting oxidative stress and caspasedependent apoptogenic pathways.

Keywords: Deltamethrin, oxidative stress, apoptosis, phenotyping, alpha-tocopherol, immunotoxicity.

Graphical Abstract

[1]
Kumar, A.; Sasmal, D.; Sharma, N. Understanding of complex signaling pathways of immune system: A review. World J. Pharm. Sci., 2014, 3(10), 241-255.
[2]
Blanco, G.A. Immune response to environmental exposure.Encyclopedia of Envoirmental Health; Elsevier Science B.V: Amsterdam, 2011, pp. 141-154.
[3]
Krzystyniak, K.; Tryphonas, H.; Fournier, M. Approaches to the evaluation of chemical-induced immunotoxicity. Environ. Health Perspect., 1995, 103, 17-22.
[4]
Yonar, M.E.; Sakin, F. Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure. Pestic. Biochem. Physiol., 2011, 99(3), 226-231.
[5]
Sondhia, S.; Dixit, A. Determination of terminal residues of oxyfluorfen in onion. Ann. Plant Prot. Sci., 2007, 15(1), 232-234.
[6]
Sondhia, S.; Singhai, B. Persistence of sulfosulfuron under wheat cropping system. Bull. Environ. Contam. Toxicol., 2008, 80(5), 423-427.
[7]
Laskowski, D.A. Physical and chemical properties of pyrethroids. Rev. Environ. Contam. Toxicol., 2002, 174, 49-170.
[8]
Chen, S.Y.; Zhang, Z.W.; He, F.S.; Yao, P.P.; Wu, Y.Q.; Sun, J.X.; Liu, L.H.; Li, Q.G. An epidemiological study on occupational acute pyrethroid poisoning in cotton farmers. Occup. Environ. Med., 1991, 48(2), 77-81.
[9]
Gassner, B.; Wüthrich, A.; Lis, J.; Scholtysik, G.; Solioz, M. Topical application of synthetic pyrethroids to cattle as a source of persistent environmental contamination. J. Environ. Sci. Health B, 1997, 32(5), 729-739.
[10]
Kolaczinski, J.H.; Curtis, C.F. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: A review of the debate. Food Chem. Toxicol., 2004, 42(5), 697-706.
[11]
Regueiro, J.; Llompart, M.; Garcia-Jares, C.; Cela, R. Development of a high-throughput method for the determination of organochlorinated compounds, nitromusks and pyrethroid insecticides in indoor dust. J. Chromatogr. A, 2007, 1174(1-2), 112-124.
[12]
Toumi, H.; Boumaiza, M.; Millet, M.; Radetski, C.M.; Felten, V.; Fouque, C.; Férard, J.F. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci. Total Environ., 2013, 458, 47-53.
[13]
Enan, E.; Pinkerton, K.E.; Peake, J.; Matsumura, F. Deltamethrin-induced thymus atrophy in male Balb/c mice. J. Biochem. Pharmacol, 1996, 51(4), 447-454.
[14]
El-Gohary, M.; Awara, W.M.; Nassar, S.; Hawas, S. Deltamethrin-induced testicular apoptosis in rats: The protective effect of nitric oxide synthase inhibitor. Toxicol., 1999, 132(1), 1-8.
[15]
Kumar, A.; Sasmal, D.; Sharma, N. Deltamethrin induced an apoptogenic signaling pathway in murine thymocytes: Exploring the molecular mechanism. J. Appl. Toxicol., 2014, 34(12), 1303-1310.
[16]
Kumar, A.; Sasmal, D.; Bhaskar, A.; Mukhopadhyay, K.; Thakur, A.; Sharma, N. Deltamethrin‐induced oxidative stress and mitochondrial caspase‐dependent signaling pathways in murine splenocytes. Environ. Toxicol., 2016, 31(7), 808-819.
[17]
Ragot, K.; Delmas, D.; Athias, A.; Nury, T.; Baarine, M.; Lizard, G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem. Phys. Lipids, 2011, 164(6), 469-478.
[18]
Mazlan, M.; Then, S.M.; Top, G.M.; Ngah, W.Z. Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J. Neurol. Sci., 2006, 243(1), 5-12.
[19]
Salinthone, S.; Kerns, A.R.; Tsang, V.; Carr, D.W. α-Tocopherol (vitamin E) stimulates cyclic AMP production in human peripheral mononuclear cells and alters immune function. Mol. Immunol., 2013, 53(3), 173-178.
[20]
Vargas, F.D.S.; Soares, D.G.; Basso, F.G.; Hebling, J. Costa, CADS. Dose-response and time-course of a-tocoferol mediating the cytoprotection of dental pulp cells against hydrogen peroxide. Braz. Dent. J., 2014, 25(5), 367-371.
[21]
González, R.; Collado, J.A.; Nell, S.; Briceño, J.; Tamayo, M.J.; Fraga, E.; Bernardos, Á.; López-Cillero, P.; Pascussi, J.M.; Rufián, S.; Vilarem, M.J. Cytoprotective properties of α-tocopherol are related to gene regulation in cultured D-galactosamine-treated human hepatocytes. Free Radic. Biol. Med., 2007, 43(10), 1439-1452.
[22]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol., 1983, 65(1-2), 55-63.
[23]
Bonini, M.G.; Rota, C.; Tomasi, A.; Mason, R.P. The oxidation of 2′, 7′-dichlorofluorescin to reactive oxygen species: A self-fulfilling prophesy? Free Radic. Biol. Med., 2006, 40(6), 968-975.
[24]
Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 1976, 74(1), 214-226.
[25]
Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc., 2006, 1(3), 1458-1461.
[26]
Darzynkiewicz, Z.; Bruno, S.; Del Bino, G.; Gorczyca, W.; Hotz, M.A.; Lassota, P.; Traganos, F. Features of apoptotic cells measured by flow cytometry. Cytometry A, 1992, 13(8), 795-808.
[27]
Sharma, N.; Kumar, A. Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes. Cell Biol. Toxicol., 2014, 30(2), 101-112.
[28]
Nemmiche, S.; Chabane-Sari, D.; Guiraud, P. Role of α-tocopherol in cadmium-induced oxidative stress in Wistar rat’s blood, liver and brain. Chem. Biol. Interact., 2007, 170(3), 221-230.
[29]
Kumar, A.; Sasmal, D.; Sharma, N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ. Toxicol. Pharmacol., 2015, 39(2), 504-514.
[30]
Yousef, M.I.; Awad, T.I.; Mohamed, E.H. Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by Vitamin E. Toxicology, 2006, 227(3), 240-247.
[31]
Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free Radic. Biol. Med., 2000, 29(3-4), 323-333.
[32]
Ramanathan, K.; Anusuyadevi, M.; Shila, S.; Panneerselvam, C. Ascorbic acid and α-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats. Toxicol. Lett., 2005, 156(2), 297-306.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy