[1]
Global Tuberculosis Report 2017, World Health Orginization:
Geneva, Switzerland., 2017
[2]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J. ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant Tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest, 2009, 136(2), 420-425.
[3]
Udwadia, Z.; Vendoti, D. Totally drug-resistant tuberculosis (TDR-TB) in India: Every dark cloud has a silver lining. J. Epidemiol. Community Health, 2013, 67(6), 471-472.
[4]
Migliori, G.B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D.M. First tuberculosis cases in Italy resistant to all tested drugs. Eur. Commun. Dis. Bullet., 2007, 12(5), E0705171.
[6]
Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat., 2017, 2017, 4920209.
[7]
Kolloli, A.; Subbian, S. Host-directed therapeutic strategies for tuberculosis. Front. Med., 2017, 4, 171.
[8]
Swaney, S.M.; Aoki, H.; Ganoza, M.C.; Shinabarger, D.L. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother., 1998, 42(12), 3251-3255.
[9]
Lee, M.; Lee, J.; Carroll, M.W.; Choi, H.; Min, S.; Song, T.; Via, L.E.; Goldfeder, L.C.; Kang, E.; Jin, B.; Park, H.; Kwak, H.; Kim, H.; Jeon, H-S.; Jeong, I.; Joh, J.S.; Chen, R.Y.; Olivier, K.N.; Shaw, P.A.; Follmann, D.; Song, S.D.; Lee, J-K.; Lee, D.; Kim, C.T.; Dartois, V.; Park, S-K.; Cho, S-N.; Barry, C.E. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N. Engl. J. Med., 2012, 367(16), 1508-1518.
[10]
Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Spanevello, A.; Migliori, G.B. Linezolid to treat extensively drug-resistant TB: Retrospective data are confirmed by experimental evidence. Eur. Respir. J., 2013, 42(1), 288-290.
[11]
Shaw, K.J.; Barbachyn, M.R. The oxazolidinones: Past, present, and future. Ann. N. Y. Acad. Sci., 2011, 1241, 48-70.
[12]
Alffenaar, J.W.; van der Laan, T.; Simons, S.; van der Werf, T.S.; van de Kasteele, P.J.; de Neeling, H.; van Soolingen, D. Susceptibility of clinical Mycobacterium tuberculosis isolates to a potentially less toxic derivate of linezolid, PNU-100480. Antimicrob. Agents Chemother., 2011, 55(3), 1287-1289.
[13]
Balasubramanian, V.; Solapure, S.; Iyer, H.; Ghosh, A.; Sharma, S.; Kaur, P.; Deepthi, R.; Subbulakshmi, V.; Ramya, V.; Ramachandran, V.; Balganesh, M.; Wright, L.; Melnick, D.; Butler, S.L.; Sambandamurthy, V.K. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob. Agents Chemother., 2014, 58(1), 495-502.
[14]
Jeong, J.W.; Jung, S.J.; Lee, H.H.; Kim, Y.Z.; Park, T.K.; Cho, Y.L.; Chae, S.E.; Baek, S.Y.; Woo, S.H.; Lee, H.S.; Kwak, J.H. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob. Agents Chemother., 2010, 54(12), 5359-5362.
[15]
Kim, T.S.; Choe, J.H.; Kim, Y.J.; Yang, C.S.; Kwon, H.J.; Jeong, J.; Kim, G.; Park, D.E.; Jo, E.K.; Cho, Y.L.; Jang, J. Activity of LCB01-0371, a Novel Oxazolidinone, against Mycobacterium abscessus. Antimicrob. Agents Chemother., 2017, 61(9), e02752-e16.
[16]
Li, C.R.; Zhai, Q.Q.; Wang, X.K.; Hu, X.X.; Li, G.Q.; Zhang, W.X.; Pang, J.; Lu, X.; Yuan, H.; Gordeev, M.F.; Chen, L.T.; Yang, X.Y.; You, X.F. In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob. Agents Chemother., 2014, 58(4), 2418-2421.
[19]
Palencia, A.; Li, X.; Bu, W.; Choi, W.; Ding, C.Z.; Easom, E.E.; Feng, L.; Hernandez, V.; Houston, P.; Liu, L.; Meewan, M.; Mohan, M.; Rock, F.L.; Sexton, H.; Zhang, S.; Zhou, Y.; Wan, B.; Wang, Y.; Franzblau, S.G.; Woolhiser, L.; Gruppo, V.; Lenaerts, A.J.; O’Malley, T.; Parish, T.; Cooper, C.B.; Waters, M.G.; Ma, Z.; Ioerger, T.R.; Sacchettini, J.C.; Rullas, J.; Angulo-Barturen, I.; Perez-Herran, E.; Mendoza, A.; Barros, D.; Cusack, S.; Plattner, J.J.; Alley, M.R. Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase. Antimicrob. Agents Chemother., 2016, 60(10), 6271-6280.
[20]
Cohen, J. Infectious disease. Approval of novel TB drug celebrated
with restraint. Science, (New York, N.Y.)., 2013, 339(16 16), 130.
[21]
Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S.K.; Shim, T.S.; Suh, G.Y.; Danilovits, M.; Ogata, H.; Kurve, A.; Chang, J.; Suzuki, K.; Tupasi, T.; Koh, W.J.; Seaworth, B.; Geiter, L.J.; Wells, C.D. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med., 2012, 366(23), 2151-2160.
[22]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466.
[23]
Andries, K.; Verhasselt, P.; Guillemont, J.; Gohlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science (New York, N.Y.)., 2005, 307(5707), 223-227.
[24]
Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Gohlmann, H.W.; Willebrords, R.; Poncelet, A.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biologic. Chem., 2008, 283(37), 25273-25280.
[25]
Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; Venter, A.; Allen, J.; Palomino, J.C.; De Marez, T.; van Heeswijk, R.P.; Lounis, N.; Meyvisch, P.; Verbeeck, J.; Parys, W.; de Beule, K.; Andries, K.; Mc Neeley, D.F. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med., 2009, 360(23), 2397-2405.
[26]
Voelker, R. MDR-TB has new drug foe after fast-track approval. JAMA, 2013, 309(5), 430.
[27]
Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Conole, D.; Blaser, A.; Franzblau, S.G.; Cooper, C.B.; Upton, A.M.; Lotlikar, M.U.; Denny, W.A.; Palmer, B.D. Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles. Bioorg. Med. Chem., 2018, 26(8), 1797-1809.
[28]
Choi, P.J.; Sutherland, H.S.; Tong, A.S.T.; Blaser, A.; Franzblau, S.G.; Cooper, C.B.; Lotlikar, M.U.; Upton, A.M.; Guillemont, J.; Motte, M.; Queguiner, L.; Andries, K.; Van den Broeck, W.; Denny, W.A.; Palmer, B.D. Synthesis and evaluation of analogues of the tuberculosis drug bedaquiline containing heterocyclic B-ring units. Bioorg. Med. Chem. Lett., 2017, 27(23), 5190-5196.
[29]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., III; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[30]
Migliori, G.B.; Sotgiu, G.; Gandhi, N.R.; Falzon, D.; DeRiemer, K.; Centis, R.; Hollm-Delgado, M.G.; Palmero, D.; Perez-Guzman, C.; Vargas, M.H.; D’Ambrosio, L.; Spanevello, A.; Bauer, M.; Chan, E.D.; Schaaf, H.S.; Keshavjee, S.; Holtz, T.H.; Menzies, D. Drug resistance beyond extensively drug-resistant tuberculosis: Individual patient data meta-analysis. Eur. Respir. J., 2013, 42(1), 169-179.
[31]
Reddy, V.M.; Einck, L.; Andries, K.; Nacy, C.A. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob. Agents Chemother., 2010, 54(7), 2840-2846.
[32]
Chen, P.; Gearhart, J.; Protopopova, M.; Einck, L.; Nacy, C.A. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother., 2006, 58(2), 332-337.
[33]
Pethe, K.; Bifani, P.; Jang, J.; Kang, S.; Park, S.; Ahn, S.; Jiricek, J.; Jung, J.; Jeon, H.K.; Cechetto, J.; Christophe, T.; Lee, H.; Kempf, M.; Jackson, M.; Lenaerts, A.J.; Pham, H.; Jones, V.; Seo, M.J.; Kim, Y.M.; Seo, M.; Seo, J.J.; Park, D.; Ko, Y.; Choi, I.; Kim, R.; Kim, S.Y.; Lim, S.; Yim, S.A.; Nam, J.; Kang, H.; Kwon, H.; Oh, C.T.; Cho, Y.; Jang, Y.; Kim, J.; Chua, A.; Tan, B.H.; Nanjundappa, M.B.; Rao, S.P.; Barnes, W.S.; Wintjens, R.; Walker, J.R.; Alonso, S.; Lee, S.; Kim, J.; Oh, S.; Oh, T.; Nehrbass, U.; Han, S.J.; No, Z.; Lee, J.; Brodin, P.; Cho, S.N.; Nam, K.; Kim, J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat. Med., 2013, 19(9), 1157-1160.
[34]
Lu, P.; Asseri, A.H.; Kremer, M.; Maaskant, J.; Ummels, R.; Lill, H.; Bald, D. The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Sci. Rep., 2018, 8(1), 2625.
[35]
Gao, C.; Peng, C.; Shi, Y.; You, X.; Ran, K.; Xiong, L.; Ye, T-h.; Zhang, L.; Wang, N.; Zhu, Y.; Liu, K.; Zuo, W.; Yu, L.; Wei, Y. Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Sci. Rep., 2016, 6, 29717.
[36]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[37]
Wilson, C.R.; Gessner, R.K.; Moosa, A.; Seldon, R.; Warner, D.F.; Mizrahi, V.; Soares de Melo, C.; Simelane, S.B.; Nchinda, A.; Abay, E.; Taylor, D.; Njoroge, M.; Brunschwig, C.; Lawrence, N.; Boshoff, H.I.M.; Barry, C.E.; Sirgel, F.A.; van Helden, P.; Harris, C.J.; Gordon, R.; Ghidelli-Disse, S.; Pflaumer, H.; Boesche, M.; Drewes, G.; Sanz, O.; Santos, G.; Rebollo-Lopez, M.J.; Urones, B.; Selenski, C.; Lafuente-Monasterio, M.J.; Axtman, M.; Lelièvre, J.; Ballell, L.; Mueller, R.; Street, L.J.; Ghorpade, S.R.; Chibale, K. Novel antitubercular 6-dialkylaminopyrimidine carboxamides from phenotypic whole-cell high throughput screening of a softfocus library: Structure-activity relationship and target identification studies. J. Med. Chem., 2017, 60(24), 10118-10134.
[39]
Schoeman, J.F.; Fieggen, G.; Seller, N.; Mendelson, M.; Hartzenberg, B. Intractable intracranial tuberculous infection responsive to thalidomide: Report of four cases. J. Child Neurol., 2006, 21(4), 301-308.
[40]
Dey, T.; Brigden, G.; Cox, H.; Shubber, Z.; Cooke, G.; Ford, N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: A systematic review and meta-analysis. J. Antimicrob. Chemother., 2013, 68(2), 284-293.
[41]
Fu, L.M.; Fu-Liu, C.S. Thalidomide and tuberculosis. Int. J. Tuberc. Lung Dis., 2002, 6(7), 569-572.
[42]
Ordway, D.; Viveiros, M.; Leandro, C.; Bettencourt, R.; Almeida, J.; Martins, M.; Kristiansen, J.E.; Molnar, J.; Amaral, L. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(3), 917-922.
[43]
Kinnings, S.L.; Liu, N.; Buchmeier, N.; Tonge, P.J.; Xie, L.; Bourne, P.E. Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLOS Comput. Biol., 2009, 5(7), e1000423.
[44]
De Lorenzo, S.; Alffenaar, J.W.; Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Tiberi, S.; Bolhuis, M.S.; van Altena, R.; Viggiani, P.; Piana, A.; Spanevello, A.; Migliori, G.B. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur. Respir. J., 2013, 41(6), 1386-1392.
[45]
Payen, M.C.; De Wit, S.; Martin, C.; Sergysels, R.; Muylle, I.; Van Laethem, Y.; Clumeck, N. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2012, 16(4), 558-560.
[46]
Hugonnet, J.E.; Blanchard, J.S. Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry, 2007, 46(43), 11998-12004.
[47]
Horita, Y.; Maeda, S.; Kazumi, Y.; Doi, N. In vitro susceptibility of Mycobacterium tuberculosis isolates to an oral carbapenem alone or in combination with beta-lactamase inhibitors. Antimicrob. Agents Chemother., 2014, 58(11), 7010-7014.
[48]
Lim, L.E.; Vilcheze, C.; Ng, C.; Jacobs, W.R., Jr; Ramon-Garcia, S.; Thompson, C.J. Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob. Agents Chemother., 2013, 57(2), 1040-1046.
[49]
Maartens, G.; Brill, M.J.E.; Pandie, M.; Svensson, E.M. Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2018, 22(1), 26-29.
[50]
Piubello, A.; Harouna, S.H.; Souleymane, M.B.; Boukary, I.; Morou, S.; Daouda, M.; Hanki, Y.; Van Deun, A. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: No relapses. Int. J. Tuberc. Lung Dis., 2014, 18(10), 1188-1194.
[51]
Moodley, R.; Godec, T.R. Short-course treatment for multidrug-resistant tuberculosis: The STREAM trials. Eur. Respir. Rev., 2016, 25(139), 29-35.
[52]
Kuaban, C.; Noeske, J.; Rieder, H.L.; Ait-Khaled, N.; Abena Foe, J.L.; Trebucq, A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int. J. Tuberc. Lung Dis., 2015, 19(5), 517-524.
[53]
Amaral, L.; Kristiansen, J.E.; Viveiros, M.; Atouguia, J. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: A review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy. J. Antimicrob. Chemother., 2001, 47(5), 505-511.
[54]
Amaral, L.; Viveiros, M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob. Agents, 2012, 39(5), 376-380.
[55]
Amaral, L.; Boeree, M.J.; Gillespie, S.H.; Udwadia, Z.F.; van Soolingen, D. Thioridazine cures extensively drug-resistant tuberculosis (XDR-TB) and the need for global trials is now! Int. J. Antimicrob. Agents, 2010, 35(6), 524-526.
[56]
Reddy, V.M.; Dubuisson, T.; Einck, L.; Wallis, R.S.; Jakubiec, W.; Ladukto, L.; Campbell, S.; Nacy, C.A. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J. Antimicrob. Chemother., 2012, 67(5), 1163-1166.
[57]
Wallis, R.S.; Jakubiec, W.; Mitton-Fry, M.; Ladutko, L.; Campbell, S.; Paige, D.; Silvia, A.; Miller, P.F. Rapid evaluation in whole blood culture of regimens for XDR-TB containing PNU-100480 (sutezolid), TMC207, PA-824, SQ109, and pyrazinamide. PLoS One, 2012, 7(1), e30479.
[58]
Safety and efficacy trial of delamanid for 6 months in patients with
multidrug resistant tuberculosis. ClinicalTrials.gov: 2018.
[59]
Pragmatic clinical trial for a more effective concise and less Toxic
MDR-TB Treatment Regimen(s) (TB-PRACTECAL). ClinicalTrials.
gov: 2018.
[60]
The evaluation of a standard treatment regimen of anti-tuberculosis
drugs for patients with MDR-TB (STREAM). ClinicalTrials.gov:
2018.
[61]
Vilaplana, C.; Montane, E.; Pinto, S.; Barriocanal, A.M.; Domenech, G.; Torres, F.; Cardona, P.J.; Costa, J. Double-blind, randomized, placebo-controlled Phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010, 28(4), 1106-1116.
[62]
Prabowo, S.A.; Groschel, M.I.; Schmidt, E.D.; Skrahina, A.; Mihaescu, T.; Hasturk, S.; Mitrofanov, R.; Pimkina, E.; Visontai, I.; de Jong, B.; Stanford, J.L.; Cardona, P.J.; Kaufmann, S.H.; van der Werf, T.S. Targeting multidrug-resistant tuberculosis (MDR-TB) by therapeutic vaccines. Med. Microbiol. Immunol., 2013, 202(2), 95-104.
[63]
Dlugovitzky, D.; Stanford, C.; Stanford, J. Immunological basis for the introduction of immunotherapy with Mycobacterium vaccae into the routine treatment of TB. Immunotherapy, 2011, 3(4), 557-568.
[64]
Katoch, K.; Singh, P.; Adhikari, T.; Benara, S.K.; Singh, H.B.; Chauhan, D.S.; Sharma, V.D.; Lavania, M.; Sachan, A.S.; Katoch, V.M. Potential of Mw as a prophylactic vaccine against pulmonary tuberculosis. Vaccine, 2008, 26(9), 1228-1234.
[65]
Coler, R.N.; Bertholet, S.; Pine, S.O.; Orr, M.T.; Reese, V.; Windish, H.P.; Davis, C.; Kahn, M.; Baldwin, S.L.; Reed, S.G. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J. Infect. Dis., 2013, 207(8), 1242-1252.
[66]
Aagaard, C.; Hoang, T.; Dietrich, J.; Cardona, P.J.; Izzo, A.; Dolganov, G.; Schoolnik, G.K.; Cassidy, J.P.; Billeskov, R.; Andersen, P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat. Med., 2011, 17(2), 189-194.
[67]
Grode, L.; Ganoza, C.A.; Brohm, C.; Weiner, J., III; Eisele, B.; Kaufmann, S.H. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31(9), 1340-1348.
[68]
Malowany, J.I.; McCormick, S.; Santosuosso, M.; Zhang, X.; Aoki, N.; Ngai, P.; Wang, J.; Leitch, J.; Bramson, J.; Wan, Y.; Xing, Z. Development of cell-based tuberculosis vaccines: Genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Molecul. Ther., 2006, 13(4), 766-775.
[69]
Skrahin, A.; Ahmed, R.K.; Ferrara, G.; Rane, L.; Poiret, T.; Isaikina, Y.; Skrahina, A.; Zumla, A.; Maeurer, M.J. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: An open-label phase 1 safety trial. Lancet Respir. Med., 2014, 2(2), 108-122.
[70]
Singh, V.; Jain, S.; Gowthaman, U.; Parihar, P.; Gupta, P.; Gupta, U.D.; Agrewala, J.N. Co-administration of IL-1+IL-6+TNF-alpha with Mycobacterium tuberculosis infected macrophages vaccine induces better protective T cell memory than BCG. PLoS One, 2011, 6(1), e16097.
[71]
Martineau, A.R.; Honecker, F.U.; Wilkinson, R.J.; Griffiths, C.J. Vitamin D in the treatment of pulmonary tuberculosis. J. Steroid Biochem. Mol. Biol., 2007, 103.
[72]
Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C.; Vitamin, D. Modulator of the immune system. Curr. Opin. Pharmacol., 2010, 10(4), 482-496.
[73]
Chan, T.Y. Vitamin D deficiency and susceptibility to tuberculosis. Calcif. Tissue Int., 2000, 66(6), 476-478.
[74]
Coussens, A.K.; Wilkinson, R.J.; Hanifa, Y.; Nikolayevskyy, V.; Elkington, P.T.; Islam, K.; Timms, P.M.; Venton, T.R.; Bothamley, G.H.; Packe, G.E.; Darmalingam, M.; Davidson, R.N.; Milburn, H.J.; Baker, L.V.; Barker, R.D.; Mein, C.A.; Bhaw-Rosun, L.; Nuamah, R.; Young, D.B.; Drobniewski, F.A.; Griffiths, C.J.; Martineau, A.R. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15449-15454.
[75]
Aharonian, F.; Akhperjanian, A.G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Beilicke, M.; Benbow, W.; Bernlohr, K.; Boisson, C.; Bochow, A.; Borrel, V.; Braun, I.; Brion, E.; Brucker, J.; Brun, P.; Buhler, R.; Bulik, T.; Busching, I.; Boutelier, T.; Carrigan, S.; Chadwick, P.M.; Charbonnier, A.; Chaves, R.C.; Chounet, L.M.; Clapson, A.C.; Coignet, G.; Costamante, L.; Dalton, M.; Degrange, B.; Deil, C.; Dickinson, H.J.; Djannati-Atai, A.; Domainko, W.; Drury, L.O.; Dubois, F.; Dubus, G.; Dyks, J.; Egberts, K.; Emmanoulopoulos, D.; Espigat, P.; Farnier, C.; Feinstein, F.; Fiasson, A.; Forster, A.; Fontaine, G.; Fussling, M.; Gabici, S.; Gallant, Y.A.; Gerard, L.; Giebels, B.; Glicenstein, J.F.; Gluck, B.; Goret, P.; Hadjichristidis, C.; Hauser, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J.A.; Hoffmann, A.; Hofmann, W.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O.C.; Jung, I.; Katarzynski, K.; Kaufmann, S.; Kendziorra, E.; Kerschhaggl, M.; Khangulyan, D.; Khelifi, B.; Keogh, D.; Komin, N.; Kosack, K.; Lamanna, G.; Lenain, J.P.; Lohse, T.; Marandon, V.; Martin, J.M.; Martineau-Huynh, O.; Marcowith, A.; Maurin, D.; McComb, T.J.; Medina, C.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Niemiec, J.; Nolan, S.J.; Ohm, S.; Olive, J.F.; de Ona Wilhelmi, E.; Orford, K.J.; Osborne, J.L.; Ostrowski, M.; Panter, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.O.; Pita, S.; Puhlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B.C.; Raue, M.; Rayner, S.M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schock, F.M.; Schroder, R.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Skilton, J.L.; Sol, H.; Spangler, D.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Superina, G.; Tam, P.H.; Tavernet, J.P.; Terrier, R.; Tibolla, O.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J.P.; Vincent, P.; Vivier, M.; Volk, H.J.; Volpe, F.; Wagner, S.J.; Ward, M.; Zdziarski, A.A.; Zech, A.; Collaboration, H.E.S.S. Limits on an energy dependence of the speed of light from a flare of the active galaxy PKS 2155-304. Phys. Rev. Lett., 2008, 101(17), 170402.
[76]
Sonawane, A.; Santos, J.C.; Mishra, B.B.; Jena, P.; Progida, C.; Sorensen, O.E.; Gallo, R.; Appelberg, R.; Griffiths, G. Cathelicidin is involved in the intracellular killing of mycobacteria in macrophages. Cell. Microbiol., 2011, 13(10), 1601-1617.
[77]
Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004, 119(6), 753-766.
[78]
Yuk, J.M.; Shin, D.M.; Lee, H.M.; Yang, C.S.; Jin, H.S.; Kim, K.K.; Lee, Z.W.; Lee, S.H.; Kim, J.M.; Jo, E.K. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3), 231-243.
[79]
Martineau, A.R.; Timms, P.M.; Bothamley, G.H.; Hanifa, Y.; Islam, K.; Claxton, A.P.; Packe, G.E.; Moore-Gillon, J.C.; Darmalingam, M.; Davidson, R.N.; Milburn, H.J.; Baker, L.V.; Barker, R.D.; Woodward, N.J.; Venton, T.R.; Barnes, K.E.; Mullett, C.J.; Coussens, A.K.; Rutterford, C.M.; Mein, C.A.; Davies, G.R.; Wilkinson, R.J.; Nikolayevskyy, V.; Drobniewski, F.A.; Eldridge, S.M.; Griffiths, C.J. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: A double-blind randomised controlled trial. Lancet, 2011, 377(9761), 242-250.
[80]
Kota, S.K.; Jammula, S.; Kota, S.K.; Tripathy, P.R.; Panda, S.; Modi, K.D. Effect of vitamin D supplementation in type 2 diabetes patients with pulmonary tuberculosis. Diabetes Metab. Syndr., 2011, 5(2), 85-89.
[81]
Nursyam, E.W.; Amin, Z.; Rumende, C.M. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones., 2006, 38(1), 3-5.
[82]
Vilcheze, C.; Hartman, T.; Weinrick, B.; Jacobs, W.R., Jr Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun., 2013, 4, 1881.
[83]
Tobin, D.M.; Roca, F.J.; Oh, S.F.; McFarland, R.; Vickery, T.W.; Ray, J.P.; Ko, D.C.; Zou, Y.; Bang, N.D.; Chau, T.T.; Vary, J.C.; Hawn, T.R.; Dunstan, S.J.; Farrar, J.J.; Thwaites, G.E.; King, M.C.; Serhan, C.N.; Ramakrishnan, L. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 2012, 148(3), 434-446.
[84]
Critchley, J.A.; Young, F.; Orton, L.; Garner, P. Corticosteroids for prevention of mortality in people with tuberculosis: A systematic review and meta-analysis. Lancet Infect. Dis., 2013, 13(3), 223-237.
[85]
Misra, U.K.; Kalita, J.; Nair, P.P. Role of aspirin in tuberculous meningitis: A randomized open label placebo controlled trial. J. Neurol. Sci., 2010, 293(1-2), 12-17.
[86]
Tobin, D.M.; Vary, J.C., Jr; Ray, J.P.; Walsh, G.S.; Dunstan, S.J.; Bang, N.D.; Hagge, D.A.; Khadge, S.; King, M.C.; Hawn, T.R.; Moens, C.B.; Ramakrishnan, L. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5), 717-730.
[87]
Guzman, J.D.; Evangelopoulos, D.; Gupta, A.; Birchall, K.; Mwaigwisya, S.; Saxty, B.; McHugh, T.D.; Gibbons, S.; Malkinson, J.; Bhakta, S. Antitubercular specific activity of ibuprofen and the other 2-arylpropanoic acids using the HT-SPOTi whole-cell phenotypic assay. BMJ Open, 2013, 3(6), e002672.
[88]
Vilaplana, C.; Marzo, E.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P.J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis., 2013, 208(2), 199-202.
[89]
Gupta, S.; Cohen, K.A.; Winglee, K.; Maiga, M.; Diarra, B.; Bishai, W.R. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(1), 574-576.
[90]
Gupta, S.; Tyagi, S.; Almeida, D.V.; Maiga, M.C.; Ammerman, N.C.; Bishai, W.R. Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am. J. Respir. Crit. Care Med., 2013, 188(5), 600-607.
[91]
Goldman, J.M.; Melo, J.V. Chronic myeloid leukemia-advances in biology and new approaches to treatment. N. Engl. J. Med., 2003, 349(15), 1451-1464.
[92]
Napier, R.J.; Rafi, W.; Cheruvu, M.; Powell, K.R.; Zaunbrecher, M.A.; Bornmann, W.; Salgame, P.; Shinnick, T.M.; Kalman, D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe, 2011, 10(5), 475-485.
[93]
Vudattu, N.K.; Magalhaes, I.; Hoehn, H.; Pan, D.; Maeurer, M.J. Expression analysis and functional activity of interleukin-7 splice variants. Genes Immun., 2009, 10(2), 132-140.
[94]
Rane, L.; Rahman, S.; Magalhaes, I.; Ahmed, R.; Spangberg, M.; Kondova, I.; Verreck, F.; Andersson, J.; Brighenti, S.; Maeurer, M.J. Increased (6 exon) interleukin-7 production after M. tuberculosis infection and soluble interleukin-7 receptor expression in lung tissue. Genes Immun., 2011, 12(7), 513-522.
[95]
Tsenova, L.; Mangaliso, B.; Muller, G.; Chen, Y.; Freedman, V.H.; Stirling, D.; Kaplan, G. Use of IMiD3, a thalidomide analog, as an adjunct to therapy for experimental tuberculous meningitis. Antimicrob. Agents Chemother., 2002, 46(6), 1887-1895.
[96]
Koo, M.S.; Manca, C.; Yang, G.; O’Brien, P.; Sung, N.; Tsenova, L.; Subbian, S.; Fallows, D.; Muller, G.; Ehrt, S.; Kaplan, G. Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS One, 2011, 6(2), e17091.
[97]
Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Koo, M.S.; Peixoto, B.; Fallows, D.; Dartois, V.; Muller, G.; Kaplan, G. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs. PLoS Pathog., 2011, 7(9), e1002262.
[98]
Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Koo, M.S.; Peixoto, B.; Fallows, D.; Zeldis, J.B.; Muller, G.; Kaplan, G. Phosphodiesterase-4 inhibition combined with isoniazid treatment of rabbits with pulmonary tuberculosis reduces macrophage activation and lung pathology. Am. J. Pathol., 2011, 179(1), 289-301.
[99]
Maiga, M.; Ammerman, N.C.; Maiga, M.C.; Tounkara, A.; Siddiqui, S.; Polis, M.; Murphy, R.; Bishai, W.R. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment. J. Infect. Dis., 2013, 208(3), 512-519.
[100]
Maiga, M.; Agarwal, N.; Ammerman, N.C.; Gupta, R.; Guo, H.; Maiga, M.C.; Lun, S.; Bishai, W.R. Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS One, 2012, 7(2), e30749.
[101]
Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med., 2013, 368(7), 651-662.
[102]
Lazebnik, Y.A.; Kaufmann, S.H.; Desnoyers, S.; Poirier, G.G.; Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature, 1994, 371(6495), 346-347.
[103]
Munoz-Planillo, R.; Kuffa, P.; Martinez-Colon, G.; Smith, B.L.; Rajendiran, T.M.; Nunez, G.K. (+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153.
[104]
Dooley, K.E.; Obuku, E.A.; Durakovic, N.; Belitsky, V.; Mitnick, C.; Nuermberger, E.L. World Health Organization group 5 drugs for the treatment of drug-resistant tuberculosis: Unclear efficacy or untapped potential? J. Infect. Dis., 2013, 207(9), 1352-1358.
[105]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: Current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[106]
Xu, H.B.; Jiang, R.H.; Xiao, H.P. Clofazimine in the treatment of multidrug-resistant tuberculosis. Clin. Microbiol. Infect., 2012, 18(11), 1104-1110.
[107]
Couvreur, P.; Vauthier, C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res., 2006, 23(7), 1417-1450.
[108]
Sharma, A.; Sharma, S.; Khuller, G.K. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J. Antimicrob. Chemother., 2004, 54(4), 761-766.
[109]
Pandey, R.; Sharma, A.; Zahoor, A.; Sharma, S.; Khuller, G.K.; Prasad, B. Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother., 2003, 52(6), 981-986.
[110]
Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev., 2010, 62(4), 547-559.
[111]
Kisich, K.O.; Gelperina, S.; Higgins, M.P.; Wilson, S.; Shipulo, E.; Oganesyan, E.; Heifets, L. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int. J. Pharm., 2007, 345(1), 154-162.
[112]
Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B. Nanoparticles as antituberculosis drugs carriers: Effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J. Nanopart. Res., 2000, 2(2), 165-171.
[113]
Muttil, P.; Kaur, J.; Kumar, K.; Yadav, A.B.; Sharma, R.; Misra, A. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci., 2007, 32(2), 140-150.
[114]
Singh, R.; Lillard, J.W., Jr Nanoparticle-based targeted drug delivery. Experiment. Molecul. Pathol., 2009, 86(3), 215-223.
[115]
Garcia-Contreras, L.; Fiegel, J.; Telko, M.J.; Elbert, K.; Hawi, A.; Thomas, M.; VerBerkmoes, J.; Germishuizen, W.A.; Fourie, P.B.; Hickey, A.J.; Edwards, D. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob. Agents Chemother., 2007, 51(8), 2830-2836.
[116]
Hussain, N.; Jaitley, V.; Florence, A.T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev., 2001, 50(1-2), 107-142.
[117]
Ahmad, Z.; Sharma, S.; Khuller, G.K. The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol. Lett., 2006, 258(2), 200-203.
[118]
Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G.A.; Li, J.; Mottram, P.L.; McKenzie, I.F.; Plebanski, M. Size-dependent immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J. Immunol., 2004, 173(5), 3148-3154.
[119]
Xiang, S.D.; Scholzen, A.; Minigo, G.; David, C.; Apostolopoulos, V.; Mottram, P.L.; Plebanski, M. Pathogen recognition and development of particulate vaccines: Does size matter? Methods, 2006, 40(1), 1-9.
[120]
Dhiman, N.; Khuller, G.K. Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (dl-lactide-co-glycolide) microparticles as carrier vehicles. FEMS Immunol. Med. Microbiol., 1998, 21(1), 19-28.
[121]
Marais, B.J.; Brittle, W.; Painczyk, K.; Hesseling, A.C.; Beyers, N.; Wasserman, E.; van Soolingen, D.; Warren, R.M. Use of light-emitting diode fluorescence microscopy to detect acid-fast bacilli in sputum. Clin. Infect. Dis., 2008, 47(2), 203-207.
[122]
Automated Real-Time Nucleic Acid Amplification Technology for
Rapid and Simultaneous Detection of Tuberculosis and Rifampicin
Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary
and Extrapulmonary TB in Adults and Children: Policy Update.
World Health Organization 2013.: Geneva, 2013.
[123]
Xpert MTB/RIF Implementation Manual: Technical and Operational
'How-To'; Practical Considerations, World Health Organization
2014.: Geneva, 2014.
[124]
Zijenah, L.S.; Kadzirange, G.; Bandason, T.; Chipiti, M.M.; Gwambiwa, B.; Makoga, F.; Chungu, P.; Kaguru, P.; Dheda, K. Comparative performance characteristics of the urine lipoarabinomannan strip test and sputum smear microscopy in hospitalized HIV-infected patients with suspected tuberculosis in Harare, Zimbabwe. BMC Infect. Dis., 2016, 16, 20.
[125]
Kroidl, I.; Clowes, P.; Reither, K.; Mtafya, B.; Rojas-Ponce, G.; Ntinginya, E.N.; Kalomo, M.; Minja, L.T.; Kowuor, D.; Saathoff, E.; Kroidl, A.; Heinrich, N.; Maboko, L.; Bates, M.; O’Grady, J.; Zumla, A.; Hoelscher, M.; Rachow, A. Performance of urine lipoarabinomannan assays for paediatric tuberculosis in Tanzania. Eur. Respir. J., 2015, 46(3), 761-770.
[126]
Nakiyingi, L.; Moodley, V.M.; Manabe, Y.C.; Nicol, M.P.; Holshouser, M.; Armstrong, D.T.; Zemanay, W.; Sikhondze, W.; Mbabazi, O.; Nonyane, B.A.; Shah, M.; Joloba, M.L.; Alland, D.; Ellner, J.J.; Dorman, S.E. Diagnostic accuracy of a rapid urine
lipoarabinomannan test for tuberculosis in HIV-infected adults. J.
Acquired Immune Def. Syndrom., (1999), 2014, 66(3), 270-279.
[127]
Ling, D.I.; Zwerling, A.A.; Pai, M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis. Eur. Respir. J., 2008, 32(5), 1165-1174.
[128]
Tagliani, E.; Cabibbe, A.M.; Miotto, P.; Borroni, E.; Toro, J.C.; Mansjo, M.; Hoffner, S.; Hillemann, D.; Zalutskaya, A.; Skrahina, A.; Cirillo, D.M. Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: A multicenter study. J. Clin. Microbiol., 2015, 53(9), 2961-2969.
[129]
Walker, T.M.; Kohl, T.A.; Omar, S.V.; Hedge, J.; Del Ojo Elias, C.; Bradley, P.; Iqbal, Z.; Feuerriegel, S.; Niehaus, K.E.; Wilson, D.J.; Clifton, D.A.; Kapatai, G.; Ip, C.L.C.; Bowden, R.; Drobniewski, F.A.; Allix-Béguec, C.; Gaudin, C.; Parkhill, J.; Diel, R.; Supply, P.; Crook, D.W.; Smith, E.G.; Walker, A.S.; Ismail, N.; Niemann, S.; Peto, T.E.A. Modernizing medical microbiology informatics, whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect. Dis., 2015, 15(10), 1193-1202.