[1]
Olivas, A.; Toscano, L.; Montero, G.; Gochev, V.; Velkova, Z.; Zlatev, R.; Stoytcheva, M. Advances in the electrochemical analysis of dopamine. Curr. Anal. Chem., 2017, 13(2), 89-103.
[2]
Li, J.; Liu, R.; Yu, J.; Jiang, F. A gold electrode modified with self assembled diethylenetriaminepentaacetic acid via charge-based discrimination. Anal. Sci., 2009, 25(11), 1289-1293.
[3]
Mcdermott, G.P.; Francis, P.S.; Holt, K.J.; Scott, K.L.; Martin, S.D.; Stupka, N.; Barnett, N.W.; Conlan, X.A. Determination of intracellular glutathione and glutathione disulfide using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Analyst, 2011, 136(12), 2578-2585.
[4]
Qi, D.; Zhang, Q.; Zhou, W.; Zhao, J.; Zhang, B.; Sha, Y.; Pang, Z. Quantification of dopamine in brain microdialysates with high-performance liquid chromatography-tandem mass spectrometry. Anal. Sci., 2016, 32(4), 419.
[5]
Zhao, Y.; Zhao, S.; Huang, J.; Ye, F. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. Talanta, 2011, 85(5), 2650-2654.
[6]
Aswathy, B.; Sony, G. Cu2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microch. J., 2014, 116, 151-156.
[7]
Chen, H.J.; Zhang, Z.H.; Cai, R.; Chen, X.; Liu, Y.N.; Rao, W.; Yao, S.Z. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection. Talanta, 2013, 115(9), 222-227.
[8]
Haginaka, J.; Miura, C.; Funaya, N.; Matsunaga, H. Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization. Anal. Sci., 2012, 28(4), 315-317.
[9]
Goud, K.Y.; Satyanarayana, M.; Reddy, K.K.; Gobi, K.V. Development of highly selective electrochemical impedance sensor for detection of sub-micromolar concentrations of 5-Chloro- 2,4-dinitrotoluene. J. Chem. Sci., 2016, 128(5), 763-770.
[10]
Rani, B.E.A.; Balasubramanian, S.; Singh, K. Computational and experimental studies of molecularly imprinted polymers for organochlorine pesticides Heptachlor and DDT. Curr. Anal. Chem., 2012, 8(4), 562-568.
[11]
Jiang, S.; Xu, J.; Xu, P.; Liu, L.; Chen, Y.; Qiao, C.; Yang, S.; Sha, Z.; Zhang, J. A novel molecularly imprinted sensor for direct Tartrazine detection. Anal. Lett., 2014, 47(2), 323-330.
[12]
Liu, R.; Long, L.P.; Lei, C.X.; Wu, Z.Y.; Liu, Y.; Li, S.J. Fabrication and application of a molecularly imprinted sensor for Morin detection. Chin. J. Anal. Chem., 2016, 44(2), 385-390.
[13]
Wei, X.P.; Chang, C.; Li, J.P. A Molecular imprinted electrochemical sensor for selectively and electrocatalytically voltammetric determination of dopamine. Acta Chimi. Sinica., 2013, 71(6), 951-956.
[14]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(2), 282.
[15]
Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phy., 2009, 81, 109-162.
[16]
Chen, T.; Tang, L.; Yang, F.; Zhao, Q.; Jin, X.; Ning, Y.; Zhang, G.J. Electrochemical determination of dopamine by a reduced graphene oxide-gold nanoparticle-modified glassy carbon electrode. Acta Chimi. Sinica., 2016, 49(14), 2223-2233.
[17]
Xia, J.; Cao, X.; Wang, Z.; Yang, M.; Zhang, F.; Lu, B.; Li, F.; Xia, L.; Li, Y.; Xia, Y. Molecularly imprinted electrochemical biosensor based on chitosan/ionic liquid–graphene composites modified electrode for determination of bovine serum albumin. Sensor. Actuat B Chem., 2016, 225(5), 305-311.
[18]
Mao, Y.; Bao, Y.; Gan, S.; Li, F.; Niu, L. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens. Bioelectron., 2011, 28(1), 291-297.
[19]
Chen, K.; Xue, D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J. Colloid Interf. Sci., 2014, 436, 41-46.