Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Silver Nanomaterials in Contemporary Molecular Physiology Research

Author(s): Igor Pantic*, David Sarenac, Mila Cetkovic, Milan Milisavljevic, Rastko Rakocevic and Sandor Kasas

Volume 27, Issue 3, 2020

Page: [411 - 422] Pages: 12

DOI: 10.2174/0929867325666180719110432

Price: $65

Abstract

Silver nanoparticles have numerous potential applications in engineering, industry, biology and medicine. Because of their unique chemical properties, they have become the focus of many research teams all over the world. Silver nanoparticles may exhibit significant antimicrobial and anticancer effects, and they may be a valuable part of various bioassays and biosensors. However, the research on biological and medical uses of AgNPs is related with numerous potential problems and challenges that need to be overcome in the years ahead. Possible toxic effects of silver nanoparticles on living organisms represent a great concern, both in clinical medicine and public health. Nevertheless, in the future, it may be expected that all metallic nanomaterials, including the ones made from silver will greatly benefit almost all natural scientific fields. In this short review, we focus on the recent research on silver nanoparticles in experimental physiology, as well as other areas of fundamental and clinical medicine.

Keywords: Silver, nanoparticle, nanotechnology, biosensor, bacteria, toxicity.

[1]
Dimitrijevic, I.; Pantic, I. Application of nanoparticles in psychophysiology and psychiatry research. Rev. Adv. Mater. Sci., 2014, 38(1), 1-6.
[2]
Nikolovski, D.; Dugalic, S.; Pantic, I. Iron oxide nanoparticles decrease nuclear fractal dimension of buccal epithelial cells in a time-dependent manner. J. Microsc., 2017, 268(1), 45-52.
[http://dx.doi.org/10.1111/jmi.12585] [PMID: 28543185]
[3]
Paunovic, J.; Vucevic, D.; Radosavljevic, T.; Pantic, S.; Nikolovski, D.; Pantic, I. Effects of metallic nanoparticles on physiological liver functions. Rev. Adv. Mater. Sci., 2017, 49(2), 123-128.
[4]
Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for cancer therapy and imaging. Mol. Cells, 2011, 31(4), 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5] [PMID: 21360197]
[5]
Bhardwaj, A.; Bhardwaj, A.; Misuriya, A.; Maroli, S.; Manjula, S.; Singh, A.K. Nanotechnology in dentistry: Present and future. J. Int. Oral Health, 2014, 6(1), 121-126.
[PMID: 24653616]
[6]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[7]
Pantic, I. Application of silver nanoparticles in experimental physiology and clinical medicine: current status and future prospects. Rev. Adv. Mater. Sci., 2014, 37, 15-19.
[8]
Pantic, I.; Paunovic, J.; Perovic, M.; Cattani, C.; Pantic, S.; Suzic, S.; Nesic, D.; Basta-Jovanovic, G. Time-dependent reduction of structural complexity of the buccal epithelial cell nuclei after treatment with silver nanoparticles. J. Microsc., 2013, 252(3), 286-294.
[http://dx.doi.org/10.1111/jmi.12091] [PMID: 24118045]
[9]
Sasani, N.; Vahdati Khaki, J.; Mojtaba Zebarjad, S. Characterization and nanomechanical properties of novel dental implant coatings containing copper decorated-carbon nanotubes. J. Mech. Behav. Biomed. Mater., 2014, 37, 125-132.
[http://dx.doi.org/10.1016/j.jmbbm.2014.05.003] [PMID: 24905179]
[10]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine (Lond.), 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[11]
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13611-13614.
[http://dx.doi.org/10.1073/pnas.96.24.13611] [PMID: 10570120]
[12]
Rajora, N.; Kaushik, S.; Jyoti, A.; Kothari, S.L. Rapid synthesis of silver nanoparticles by Pseudomonas stutzeri isolated from textile soil under optimised conditions and evaluation of their antimicrobial and cytotoxicity properties. IET Nanobiotechnol., 2016, 10(6), 367-373.
[http://dx.doi.org/10.1049/iet-nbt.2015.0107] [PMID: 27906136]
[13]
Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedicine, 2013, 8, 4277-4290.
[PMID: 24235826]
[14]
Tenzin, T.; Gupta, N.V.; Mbuya, V.B. Silver nanoparticles: Synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. J. Chem. Pharm. Res., 2016, 8(2), 526-537.
[15]
Sintubin, L.; De Windt, W.; Dick, J.; Mast, J.; van der Ha, D.; Verstraete, W.; Boon, N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol., 2009, 84(4), 741-749.
[http://dx.doi.org/10.1007/s00253-009-2032-6] [PMID: 19488750]
[16]
Kalpana, D.; Lee, Y.S. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb. Technol., 2013, 52(3), 151-156.
[http://dx.doi.org/10.1016/j.enzmictec.2012.12.006] [PMID: 23410925]
[17]
Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine (Lond.), 2009, 5(4), 382-386.
[http://dx.doi.org/10.1016/j.nano.2009.06.005] [PMID: 19616127]
[18]
Ottoni, C.A.; Simões, M.F.; Fernandes, S.; Dos Santos, J.G.; da Silva, E.S.; de Souza, R.F.B.; Maiorano, A.E. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express, 2017, 7(1), 31.
[http://dx.doi.org/10.1186/s13568-017-0332-2] [PMID: 28144889]
[19]
Seppälä, H.; Klaukka, T.; Vuopio-Varkila, J.; Muotiala, A.; Helenius, H.; Lager, K.; Huovinen, P. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N. Engl. J. Med., 1997, 337(7), 441-446.
[http://dx.doi.org/10.1056/NEJM199708143370701] [PMID: 9250845]
[20]
Sweet, M.J.; Singleton, I. Silver nanoparticles: a microbial perspective. Adv. Appl. Microbiol., 2011, 77, 115-133.
[http://dx.doi.org/10.1016/B978-0-12-387044-5.00005-4] [PMID: 22050824]
[21]
Chernousova, S.; Epple, M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl., 2013, 52(6), 1636-1653.
[http://dx.doi.org/10.1002/anie.201205923] [PMID: 23255416]
[22]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[23]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[24]
Danilczuk, M.; Lund, A.; Sadlo, J.; Yamada, H.; Michalik, J. Conduction electron spin resonance of small silver particles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 189-191.
[http://dx.doi.org/10.1016/j.saa.2005.05.002] [PMID: 15978868]
[25]
Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74(7), 2171-2178.
[http://dx.doi.org/10.1128/AEM.02001-07] [PMID: 18245232]
[26]
Naqvi, S.Z.; Kiran, U.; Ali, M.I.; Jamal, A.; Hameed, A.; Ahmed, S.; Ali, N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomedicine, 2013, 8, 3187-3195.
[http://dx.doi.org/10.2147/IJN.S49284] [PMID: 23986635]
[27]
Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology, 2010, 8, 1.
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[28]
Lu, L.; Sun, R.W.; Chen, R.; Hui, C.K.; Ho, C.M.; Luk, J.M.; Lau, G.K.; Che, C.M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. (Lond.), 2008, 13(2), 253-262.
[PMID: 18505176]
[29]
Sun, G.; Jin, P.; Hao, R.S.; Liu, X.W.; Xie, Z.Y.; Li, F.D.; Yi, Y.H.; Zhang, X.P. [Percutaneous kyphoplasty with double or single balloon in treatment of osteoporotic vertebral body compressive fracture: a clinical controlled study]. Zhonghua Yi Xue Za Zhi, 2008, 88(3), 149-152.
[PMID: 18361808]
[30]
Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett., 2008, 3, 129-133.
[http://dx.doi.org/10.1007/s11671-008-9128-2]
[31]
Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem., 2009, 20(8), 1497-1502.
[http://dx.doi.org/10.1021/bc900215b] [PMID: 21141805]
[32]
Enoch, D.A.; Ludlam, H.A.; Brown, N.M. Invasive fungal infections: a review of epidemiology and management options. J. Med. Microbiol., 2006, 55(Pt 7), 809-818.
[http://dx.doi.org/10.1099/jmm.0.46548-0] [PMID: 16772406]
[33]
Roe, D.; Karandikar, B.; Bonn-Savage, N.; Gibbins, B.; Roullet, J.B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother., 2008, 61(4), 869-876.
[http://dx.doi.org/10.1093/jac/dkn034] [PMID: 18305203]
[34]
Kim, S.W.; Kim, K.S.; Lamsal, K.; Kim, Y.J.; Kim, S.B.; Jung, M.; Sim, S.J.; Kim, H.S.; Chang, S.J.; Kim, J.K.; Lee, Y.S. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J. Microbiol. Biotechnol., 2009, 19(8), 760-764.
[PMID: 19734712]
[35]
Govender, R.; Phulukdaree, A.; Gengan, R.M.; Anand, K.; Chuturgoon, A.A. Silver nanoparticles of Albizia adianthifolia: the induction of apoptosis in human lung carcinoma cell line. J. Nanobiotechnology, 2013, 11, 5.
[http://dx.doi.org/10.1186/1477-3155-11-5] [PMID: 23418790]
[36]
Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Anwar, Y.; Khan, S.B. Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J. Photochem. Photobiol. B, 2017, 175, 99-108.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.031] [PMID: 28865320]
[37]
He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; Zheng, X. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomedicine, 2016, 11, 1879-1887.
[http://dx.doi.org/10.2147/IJN.S103695] [PMID: 27217750]
[38]
Azizi, M.; Ghourchian, H.; Yazdian, F.; Bagherifam, S.; Bekhradnia, S.; Nyström, B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci. Rep., 2017, 7(1), 5178.
[http://dx.doi.org/10.1038/s41598-017-05461-3] [PMID: 28701707]
[39]
Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V.; Kadirvelu, K.; Balagurunathan, R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: in vitro and in vivo perspectives. Nanoscale, 2017, 9(43), 16773-16790.
[http://dx.doi.org/10.1039/C7NR04979J] [PMID: 29072767]
[40]
Madhu, C.S.; Balaji, K.S.; Sharada, A.C.; Shankar, J. Anticancer effect of silver nanoparticles (AgNP’s) from Decalepis hamiltonii: An in vivo approach. Materials Today: Proceedings, 2017, 4(11), 11947-11958.
[http://dx.doi.org/10.1016/j.matpr.2017.09.116]
[41]
Antony, J.J.; Sithika, M.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf. B Biointerfaces, 2013, 108, 185-190.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.041] [PMID: 23537836]
[42]
El-Hussein, A.; Hamblin, M.R. ROS generation and DNA damage with photo-inactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnol., 2017, 11(2), 173-178.
[http://dx.doi.org/10.1049/iet-nbt.2015.0083] [PMID: 28477000]
[43]
Baliyan, A.; Usha, S.P.; Gupta, B.D.; Gupta, R.; Sharma, E.K. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles. J. Biomed. Opt., 2017, 22(10), 1-10.
[http://dx.doi.org/10.1117/1.JBO.22.10.107001] [PMID: 29076305]
[44]
Cesarino, I.; Galesco, H.V.; Machado, S.A. Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. Mater. Sci. Eng. C, 2014, 40, 49-54.
[http://dx.doi.org/10.1016/j.msec.2014.03.030] [PMID: 24857464]
[45]
Jafari, M.; Tashkhourian, J.; Absalan, G. Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches. Talanta, 2018, 178, 870-878.
[http://dx.doi.org/10.1016/j.talanta.2017.10.005] [PMID: 29136908]
[46]
Marin, S.; Vlasceanu, G.M.; Tiplea, R.E.; Bucur, I.R.; Lemnaru, M.; Marin, M.M.; Grumezescu, A.M. Applications and toxicity of silver nanoparticles: a recent review. Curr. Top. Med. Chem., 2015, 15(16), 1596-1604.
[http://dx.doi.org/10.2174/1568026615666150414142209] [PMID: 25877089]
[47]
Teerasong, S.; Jinnarak, A.; Chaneam, S.; Wilairat, P.; Nacapricha, D. Poly(vinyl alcohol) capped silver nanoparticles for antioxidant assay based on seed-mediated nanoparticle growth. Talanta, 2017, 170, 193-198.
[http://dx.doi.org/10.1016/j.talanta.2017.04.009] [PMID: 28501158]
[48]
Wang, N.; Zhang, D.; Deng, X.; Sun, Y.; Wang, X.; Ma, P.; Song, D. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 191, 290-295.
[http://dx.doi.org/10.1016/j.saa.2017.10.039] [PMID: 29054067]
[49]
Zhao, W.; Wang, H.; Qin, X.; Wang, X.; Zhao, Z.; Miao, Z.; Chen, L.; Shan, M.; Fang, Y.; Chen, Q. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta, 2009, 80(2), 1029-1033.
[http://dx.doi.org/10.1016/j.talanta.2009.07.055] [PMID: 19836592]
[50]
Zheng, M.; He, J.; Wang, Y.; Wang, C.; Ma, S.; Sun, X. Colorimetric recognition of 6-benzylaminopurine in environmental samples by using thioglycolic acid functionalized silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 192, 27-33.
[http://dx.doi.org/10.1016/j.saa.2017.10.073] [PMID: 29126005]
[51]
Leesutthiphonchai, W.; Dungchai, W.; Siangproh, W.; Ngamrojnavanich, N.; Chailapakul, O. Selective determination of homocysteine levels in human plasma using a silver nanoparticle-based colorimetric assay. Talanta, 2011, 85(2), 870-876.
[http://dx.doi.org/10.1016/j.talanta.2011.04.041] [PMID: 21726712]
[52]
Kumar, A.; Vyas, G.; Bhatt, M.; Bhatt, S.; Paul, P. Silver nanoparticle based highly selective and sensitive solvatochromatic sensor for colorimetric detection of 1,4-dioxane in aqueous media. Chem. Commun. (Camb.), 2015, 51(88), 15936-15939.
[http://dx.doi.org/10.1039/C5CC06744H] [PMID: 26377615]
[53]
Tai, S.P.Y. W.; Shieh, D.B.; Chen, L.J.; Lin, K.J.; Yu, C.H.; Chu, S.W.; Chang, C.H.; Shi, X.Y.; Wen, Y.C.; Lin, K.H.; Liu, T.M.; Sun, C.K. Molecular imaging of cancer cells using plasmon‐resonant‐enhanced third‐harmonic‐generation in silver nanoparticles. Adv. Mater., 2007, 19(24), 112.
[http://dx.doi.org/10.1002/adma.200602213]
[54]
Gao, S.; Chen, D.; Li, Q.; Ye, J.; Jiang, H.; Amatore, C.; Wang, X. Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Sci. Rep., 2014, 4, 4384.
[http://dx.doi.org/10.1038/srep04384] [PMID: 24632892]
[55]
AshaRani P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3(2), 279-290.
[http://dx.doi.org/10.1021/nn800596w] [PMID: 19236062]
[56]
Bartłomiejczyk, T.; Lankoff, A.; Kruszewski, M.; Szumiel, I. Silver nanoparticles -- allies or adversaries? Ann. Agric. Environ. Med., 2013, 20(1), 48-54.
[PMID: 23540211]
[57]
Eom, H.J.; Choi, J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ. Sci. Technol., 2010, 44(21), 8337-8342.
[http://dx.doi.org/10.1021/es1020668] [PMID: 20932003]
[58]
Ghosh, M. J, M.; Sinha, S.; Chakraborty, A.; Mallick, S.K.; Bandyopadhyay, M.; Mukherjee, A. In vitro and in vivo genotoxicity of silver nanoparticles. Mutat. Res., 2012, 749(1-2), 60-69.
[http://dx.doi.org/10.1016/j.mrgentox.2012.08.007] [PMID: 22960309]
[59]
Heydrnejad, M.S.; Samani, R.J.; Aghaeivanda, S. Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice (mus musculus). Biol. Trace Elem. Res., 2015, 165(2), 153-158.
[http://dx.doi.org/10.1007/s12011-015-0247-1] [PMID: 25637567]
[60]
Kim, H.R.; Kim, M.J.; Lee, S.Y.; Oh, S.M.; Chung, K.H. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat. Res., 2011, 726(2), 129-135.
[http://dx.doi.org/10.1016/j.mrgentox.2011.08.008] [PMID: 21945414]
[61]
Lee, T.Y.; Liu, M.S.; Huang, L.J.; Lue, S.I.; Lin, L.C.; Kwan, A.L.; Yang, R.C. Bioenergetic failure correlates with autophagy and apoptosis in rat liver following silver nanoparticle intraperitoneal administration. Part. Fibre Toxicol., 2013, 10, 40.
[http://dx.doi.org/10.1186/1743-8977-10-40] [PMID: 23958063]
[62]
McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci. Total Environ., 2017, 575, 231-246.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.041] [PMID: 27744152]
[63]
Mukherjee, S.G.; O’Claonadh, N.; Casey, A.; Chambers, G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol. In Vitro, 2012, 26(2), 238-251.
[http://dx.doi.org/10.1016/j.tiv.2011.12.004] [PMID: 22198051]
[64]
Patlolla, A.K.; Hackett, D.; Tchounwou, P.B. Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol. Cell. Biochem., 2015, 399(1-2), 257-268.
[http://dx.doi.org/10.1007/s11010-014-2252-7] [PMID: 25355157]
[65]
Kone, B.C.; Kaleta, M.; Gullans, S.R. Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J. Membr. Biol., 1988, 102(1), 11-19.
[http://dx.doi.org/10.1007/BF01875349] [PMID: 2456393]
[66]
White, J.M.; Powell, A.M.; Brady, K.; Russell-Jones, R. Severe generalized argyria secondary to ingestion of colloidal silver protein. Clin. Exp. Dermatol., 2003, 28(3), 254-256.
[http://dx.doi.org/10.1046/j.1365-2230.2003.01214.x] [PMID: 12780705]
[67]
Venugopal, B.; Luckey, T.D. Metal toxicity in mammals in: Chemical Toxicology of Metals and Metalloids; Academic Press: New York, 1978.
[68]
Borm, P.J.; Kreyling, W. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery. J. Nanosci. Nanotechnol., 2004, 4(5), 521-531.
[http://dx.doi.org/10.1166/jnn.2004.081] [PMID: 15503438]
[69]
Aaseth, J.; Olsen, A.; Halse, J.; Hovig, T. Argyria-tissue deposition of silver as selenide. Scand. J. Clin. Lab. Invest., 1981, 41(3), 247-251.
[http://dx.doi.org/10.3109/00365518109092041] [PMID: 7313508]
[70]
McAuliffe, M.E.; Perry, M.J. Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicology, 2007, 1, 204-210.
[http://dx.doi.org/10.1080/17435390701675914]
[71]
Rosenman, K.D.; Seixas, N.; Jacobs, I. Potential nephrotoxic effects of exposure to silver. Br. J. Ind. Med., 1987, 44(4), 267-272.
[http://dx.doi.org/10.1136/oem.44.4.267] [PMID: 3567102]
[72]
Sung, J.H.; Ji, J.H.; Yoon, J.U.; Kim, D.S.; Song, M.Y.; Jeong, J.; Han, B.S.; Han, J.H.; Chung, Y.H.; Kim, J.; Kim, T.S.; Chang, H.K.; Lee, E.J.; Lee, J.H.; Yu, I.J. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol., 2008, 20(6), 567-574.
[http://dx.doi.org/10.1080/08958370701874671] [PMID: 18444009]
[73]
Murata, T.; Kanao-koshikawa, M.; Takamatsu, T. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollut., 2005, 164, 103-118.
[http://dx.doi.org/10.1007/s11270-005-2254-x]
[74]
Wood, C.M.; Playle, R.C.; Hogstrand, C. Physiology and modelling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem., 1999, 18, 71-83.
[http://dx.doi.org/10.1002/etc.5620180110]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy