Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Dantrolene : From Malignant Hyperthermia to Alzheimer’s Disease

Author(s): Yun Shi, Yong Wang and Huafeng Wei*

Volume 18, Issue 9, 2019

Page: [668 - 676] Pages: 9

DOI: 10.2174/1871527317666180619162649

Price: $65

Abstract

Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer’s Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.

Keywords: Alzheimer’s disease, dantrolene, ryanodine receptor, calcium, amyloid, mild cognitive impairment.

Graphical Abstract

[1]
Alzheimer’s Association Report 2015. Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11: 332-84.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003]
[2]
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[3]
Thompson CA, Spilsbury K, Hall J, Birks Y, Barnes C, Adamson J. Systematic review of information and support interventions for caregivers of people with dementia. BMC Geriatr 2007; 7: 18.
[http://dx.doi.org/10.1186/1471-2318-7-18] [PMID: 17662119]
[4]
Guedel AE. Inhalation anesthesia. Am J Nurs 1952; 52: 238.
[http://dx.doi.org/10.1097/00000446-195202000-00074]
[5]
Brandom BW, Bina S, Wong CA, et al. Ryanodine receptor type 1 gene variants in the malignant hyperthermia-susceptible population of the United States. Anesth Analg 2013; 116(5): 1078-86.
[http://dx.doi.org/10.1213/ANE.0b013e31828a71ff] [PMID: 23558838]
[6]
Carpenter D, Robinson RL, Quinnell RJ, et al. Genetic variation in RYR1 and malignant hyperthermia phenotypes. Br J Anaesth 2009; 103(4): 538-48.
[http://dx.doi.org/10.1093/bja/aep204] [PMID: 19648156]
[7]
Kolb ME, Horne ML, Martz R. Dantrolene in human malignant hyperthermia. Anesthesiology 1982; 56(4): 254-62.
[http://dx.doi.org/10.1097/00000542-198204000-00005] [PMID: 7039419]
[8]
Britt BA, Kalow W. Malignant hyperthermia: A statistical review. Can Anaesth Soc J 1970; 17(4): 293-315.
[http://dx.doi.org/10.1007/BF03004694] [PMID: 4246871]
[9]
Larach MG, Brandom BW, Allen GC, Gronert GA, Lehman EB. Cardiac arrests and deaths associated with malignant hyperthermia in north america from 1987 to 2006: a report from the north american malignant hyperthermia registry of the malignant hyperthermia association of the United States. Anesthesiology 2008; 108(4): 603-11.
[http://dx.doi.org/10.1097/ALN.0b013e318167aee2] [PMID: 18362591]
[10]
Inan S, Wei H. The cytoprotective effects of dantrolene: A ryanodine receptor antagonist. Anesth Analg 2010; 111(6): 1400-10.
[http://dx.doi.org/10.1213/ANE.0b013e3181f7181c] [PMID: 20861418]
[11]
Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. Dantrolene--a review of its pharmacology, therapeutic use and new developments. Anaesthesia 2004; 59(4): 364-73.
[http://dx.doi.org/10.1111/j.1365-2044.2004.03658.x] [PMID: 15023108]
[12]
Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain 2011; 4: 3.
[http://dx.doi.org/10.1186/1756-6606-4-3] [PMID: 21214928]
[13]
Tam JH, Pasternak SH. Amyloid and Alzheimer’s disease: Inside and out. Can J Neurol Sci 2012; 39(3): 286-98.
[http://dx.doi.org/10.1017/S0317167100013408] [PMID: 22547507]
[14]
Bukar Maina M, Al-Hilaly YK, Serpell LC. Nuclear tau and its potential role in Alzheimer’s disease. Biomolecules 2016; 6(1): 9.
[http://dx.doi.org/10.3390/biom6010009] [PMID: 26751496]
[15]
Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375(6534): 754-60.
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[16]
Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269(5226): 973-7.
[http://dx.doi.org/10.1126/science.7638622] [PMID: 7638622]
[17]
Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement 2014; 10(3): 372-80.
[http://dx.doi.org/10.1016/j.jalz.2013.11.003] [PMID: 24589433]
[18]
Folch J, Petrov D, Ettcheto M, et al. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016. 20168501693
[http://dx.doi.org/10.1155/2016/8501693] [PMID: 26881137]
[19]
Berridge MJ, Bootman MD, Lipp P. Calcium--a life and death signal. Nature 1998; 395(6703): 645-8.
[http://dx.doi.org/10.1038/27094] [PMID: 9790183]
[20]
Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009; 15(3): 89-100.
[http://dx.doi.org/10.1016/j.molmed.2009.01.001] [PMID: 19230774]
[21]
Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4(7): 552-65.
[http://dx.doi.org/10.1038/nrm1150] [PMID: 12838338]
[22]
Khachaturian ZS. Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview. Ann N Y Acad Sci 1989; 568: 1-4.
[http://dx.doi.org/10.1111/j.1749-6632.1989.tb12485.x] [PMID: 2629579]
[23]
Pierrot N, Ghisdal P, Caumont AS, Octave JN. Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem 2004; 88(5): 1140-50.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02227.x] [PMID: 15009669]
[24]
Pierrot N, Santos SF, Feyt C, Morel M, Brion JP, Octave JN. Calcium-mediated transient phosphorylation of tau and amyloid precursor protein followed by intraneuronal amyloid-β accumulation. J Biol Chem 2006; 281(52): 39907-14.
[http://dx.doi.org/10.1074/jbc.M606015200] [PMID: 17085446]
[25]
Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 2007; 1768(8): 1966-75.
[http://dx.doi.org/10.1016/j.bbamem.2007.04.021] [PMID: 17553456]
[26]
Stutzmann GE. Calcium dysregulation, IP3 signaling, and Alzheimer’s disease. Neuroscientist 2005; 11(2): 110-5.
[http://dx.doi.org/10.1177/1073858404270899] [PMID: 15746379]
[27]
Baloyannis SJ, Costa V, Michmizos D. Mitochondrial alterations in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2004; 19(2): 89-93.
[http://dx.doi.org/10.1177/153331750401900205] [PMID: 15106389]
[28]
Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2004; 117(Pt 24): 5721-9.
[http://dx.doi.org/10.1242/jcs.01558] [PMID: 15537830]
[29]
Martin C, Chapman KE, Seckl JR, Ashley RH. Partial cloning and differential expression of ryanodine receptor/calcium-release channel genes in human tissues including the hippocampus and cerebellum. Neuroscience 1998; 85(1): 205-16.
[http://dx.doi.org/10.1016/S0306-4522(97)00612-X] [PMID: 9607712]
[30]
Kelliher M, Fastbom J, Cowburn RF, et al. Alterations in the ryanodine receptor calcium release channel correlate with Alzheimer’s disease neurofibrillary and β-amyloid pathologies. Neuroscience 1999; 92(2): 499-513.
[http://dx.doi.org/10.1016/S0306-4522(99)00042-1] [PMID: 10408600]
[31]
Bruno AM, Huang JY, Bennett DA, Marr RA, Hastings ML, Stutzmann GE. Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 2012; 33(5): 1001.e1-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.011] [PMID: 21531043]
[32]
Chakroborty S, Goussakov I, Miller MB, Stutzmann GE. Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009; 29(30): 9458-70.
[http://dx.doi.org/10.1523/JNEUROSCI.2047-09.2009] [PMID: 19641109]
[33]
Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I. Role of presenilins in neuronal calcium homeostasis. J Neurosci 2010; 30(25): 8566-80.
[http://dx.doi.org/10.1523/JNEUROSCI.1554-10.2010] [PMID: 20573903]
[34]
Oulès B, Del Prete D, Greco B, et al. Ryanodine receptor blockade reduces amyloid-β load and memory impairments in Tg2576 mouse model of Alzheimer disease. J Neurosci 2012; 32(34): 11820-34.
[http://dx.doi.org/10.1523/JNEUROSCI.0875-12.2012] [PMID: 22915123]
[35]
Supnet C, Grant J, Kong H, Westaway D, Mayne M. Amyloid-β-(1-42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 2006; 281(50): 38440-7.
[http://dx.doi.org/10.1074/jbc.M606736200] [PMID: 17050533]
[36]
Liu J, Supnet C, Sun S, et al. The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease. Channels (Austin) 2014; 8(3): 230-42.
[http://dx.doi.org/10.4161/chan.27471] [PMID: 24476841]
[37]
Supnet C, Noonan C, Richard K, Bradley J, Mayne M. Up-regulation of the type 3 ryanodine receptor is neuroprotective in the TgCRND8 mouse model of Alzheimer’s disease. J Neurochem 2010; 112(2): 356-65.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06487.x] [PMID: 19903243]
[38]
Wei H, Xie Z. Anesthesia, calcium homeostasis and Alzheimer’s disease. Curr Alzheimer Res 2009; 6(1): 30-5.
[http://dx.doi.org/10.2174/156720509787313934] [PMID: 19199872]
[39]
Llinas R, Moreno H. Perspective on calcium and Alzheimer’s disease. Alzheimers Dement 2017; 13(2): 196-7.
[http://dx.doi.org/10.1016/j.jalz.2017.01.004] [PMID: 28130964]
[40]
Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci 2007; 1097: 265-77.
[http://dx.doi.org/10.1196/annals.1379.025] [PMID: 17413028]
[41]
Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 2006; 26(19): 5180-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0739-06.2006] [PMID: 16687509]
[42]
Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000; 275(24): 18195-200.
[http://dx.doi.org/10.1074/jbc.M000040200] [PMID: 10764737]
[43]
Kipanyula MJ, Contreras L, Zampese E, et al. Ca2+ dysregulation in neurons from transgenic mice expressing mutant presenilin 2. Aging Cell 2012; 11(5): 885-93.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00858.x] [PMID: 22805202]
[44]
Ferreiro E, Oliveira CR, Pereira CM. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 2008; 30(3): 331-42.
[http://dx.doi.org/10.1016/j.nbd.2008.02.003] [PMID: 18420416]
[45]
Wu B, Yamaguchi H, Lai FA, Shen J. Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci USA 2013; 110(37): 15091-6.
[http://dx.doi.org/10.1073/pnas.1304171110] [PMID: 23918386]
[46]
Goussakov I, Miller MB, Stutzmann GE. NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 2010; 30(36): 12128-37.
[http://dx.doi.org/10.1523/JNEUROSCI.2474-10.2010] [PMID: 20826675]
[47]
Makarewicz D, Ziemińska E, Łazarewicz JW. Dantrolene inhibits NMDA-induced 45Ca uptake in cultured cerebellar granule neurons. Neurochem Int 2003; 43(4-5): 273-8.
[http://dx.doi.org/10.1016/S0197-0186(03)00012-3] [PMID: 12742069]
[48]
Dawson VL, Dawson TM, Uhl GR, Snyder SH. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci USA 1993; 90(8): 3256-9.
[http://dx.doi.org/10.1073/pnas.90.8.3256] [PMID: 8097316]
[49]
Rybalchenko V, Hwang S-Y, Rybalchenko N, Koulen P. The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity. Int J Biochem Cell Biol 2008; 40(1): 84-97.
[http://dx.doi.org/10.1016/j.biocel.2007.06.023] [PMID: 17709274]
[50]
Hayrapetyan V, Rybalchenko V, Rybalchenko N, Koulen P. The N-terminus of presenilin-2 increases single channel activity of brain ryanodine receptors through direct protein-protein interaction. Cell Calcium 2008; 44(5): 507-18.
[http://dx.doi.org/10.1016/j.ceca.2008.03.004] [PMID: 18440065]
[51]
Payne AJ, Gerdes BC, Naumchuk Y, McCalley AE, Kaja S, Koulen P. Presenilins regulate the cellular activity of ryanodine receptors differentially through isotype-specific N-terminal cysteines. Exp Neurol 2013; 250: 143-50.
[http://dx.doi.org/10.1016/j.expneurol.2013.09.001] [PMID: 24029002]
[52]
Oulès B, Del Prete D, Greco B, et al. Leaky Ryanodine receptors increases Amyloid-beta load and induces memory impairments in Tg2576 mouse model of Alzheimer disease. Mol Neurodegener 2013; 8: 54.
[http://dx.doi.org/10.1186/1750-1326-8-S1-P54]
[53]
Bussiere R, Lacampagne A, Reiken S, et al. Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. J Biol Chem 2017; 292(24): 10153-68.
[http://dx.doi.org/10.1074/jbc.M116.743070] [PMID: 28476886]
[54]
Ferreiro E, Oliveira CR, Pereira C. Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-β peptide. J Neurosci Res 2004; 76(6): 872-80.
[http://dx.doi.org/10.1002/jnr.20135] [PMID: 15160398]
[55]
Resende R, Ferreiro E, Pereira C, Resende de Oliveira C. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: Involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 2008; 155(3): 725-37.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.036] [PMID: 18621106]
[56]
Kwon KJ, Park JH, Jo I, et al. Disruption of neuronal nitric oxide synthase dimerization contributes to the development of Alzheimer’s disease: Involvement of cyclin-dependent kinase 5-mediated phosphorylation of neuronal nitric oxide synthase at Ser(293). Neurochem Int 2016; 99: 52-61.
[http://dx.doi.org/10.1016/j.neuint.2016.06.005] [PMID: 27296112]
[57]
Welshhans K, Rehder V. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release. Eur J Neurosci 2007; 26(6): 1537-47.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05768.x] [PMID: 17714493]
[58]
Mikami Y, Kanemaru K, Okubo Y, et al. Nitric oxide-induced activation of the type 1 ryanodine receptor is critical for epileptic seizure-induced neuronal cell death. EBioMedicine 2016; 11: 253-61.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.020] [PMID: 27544065]
[59]
Kakizawa S, Yamazawa T, Chen Y, et al. Nitric oxide-induced calcium release via ryanodine receptors regulates neuronal function. EMBO J 2012; 31(2): 417-28.
[http://dx.doi.org/10.1038/emboj.2011.386] [PMID: 22036948]
[60]
Nathan C, Calingasan N, Nezezon J, et al. Protection from Alzheimer’s-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. J Exp Med 2005; 202(9): 1163-9.
[http://dx.doi.org/10.1084/jem.20051529] [PMID: 16260491]
[61]
Takahashi M, Chin Y, Nonaka T, Hasegawa M, Watanabe N, Arai T. Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells. Neurosci Lett 2012; 510(1): 48-52.
[http://dx.doi.org/10.1016/j.neulet.2011.12.067] [PMID: 22249117]
[62]
Ditlevsen DK, Køhler LB, Berezin V, Bock E. Cyclic guanosine monophosphate signalling pathway plays a role in neural cell adhesion molecule-mediated neurite outgrowth and survival. J Neurosci Res 2007; 85(4): 703-11.
[http://dx.doi.org/10.1002/jnr.21175] [PMID: 17279552]
[63]
Kohgami S, Ogata T, Morino T, Yamamoto H, Schubert P. Pharmacological shift of the ambiguous nitric oxide action from neurotoxicity to cyclic GMP-mediated protection. Neurol Res 2010; 32(9): 938-44.
[http://dx.doi.org/10.1179/016164110X12681290831243] [PMID: 20426899]
[64]
Colton CA, Vitek MP, Wink DA, et al. NO synthase 2(NOS2) deletion promotes multiple pathologies in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2006; 103(34): 12867-72.
[http://dx.doi.org/10.1073/pnas.0601075103] [PMID: 16908860]
[65]
Colton CA, Wilcock DM, Wink DA, Davis J, Van Nostrand WE, Vitek MP. The effects of NOS2 gene deletion on mice expressing mutated human AbetaPP. J Alzheimers Dis 2008; 15(4): 571-87.
[http://dx.doi.org/10.3233/JAD-2008-15405] [PMID: 19096157]
[66]
Chakroborty S, Kim J, Schneider C, West AR, Stutzmann GE. Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer’s disease mice. J Neurosci 2015; 35(17): 6893-902.
[http://dx.doi.org/10.1523/JNEUROSCI.4002-14.2015] [PMID: 25926464]
[67]
Rivest S. TREM2 enables amyloid β clearance by microglia. Cell Res 2015; 25(5): 535-6.
[http://dx.doi.org/10.1038/cr.2015.37] [PMID: 25828532]
[68]
Wisniewski HM, Wegiel J, Wang KC, Lach B. Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease. Acta Neuropathol 1992; 84(2): 117-27.
[http://dx.doi.org/10.1007/BF00311383] [PMID: 1381856]
[69]
Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 2018; 38(12): 2911-9.
[http://dx.doi.org/10.1523/JNEUROSCI.1136-17.2017] [PMID: 29563239]
[70]
Griffith CM, Xie MX, Qiu WY, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer’s disease. Neuroscience 2016; 336: 81-101.
[http://dx.doi.org/10.1016/j.neuroscience.2016.08.034] [PMID: 27586053]
[71]
Yamamoto M, Kiyota T, Horiba M, et al. Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007; 170(2): 680-92.
[http://dx.doi.org/10.2353/ajpath.2007.060378] [PMID: 17255335]
[72]
Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-γ and interleukin-1β or tumor necrosis factor α on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000; 7(6 Pt B): 682-9.
[http://dx.doi.org/10.1006/nbdi.2000.0321] [PMID: 11114266]
[73]
DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 1998; 149(2): 329-40.
[http://dx.doi.org/10.1006/exnr.1997.6738] [PMID: 9500964]
[74]
Howlett DR, Bate ST, Collier S, et al. Characterisation of amyloid-induced inflammatory responses in the rat retina. Exp Brain Res 2011; 214(2): 185-97.
[http://dx.doi.org/10.1007/s00221-011-2819-4] [PMID: 21850448]
[75]
Jamalidoust M, Ravanshad M, Namayandeh M, Zare M, Asaei S, Ziyaeyan M. Construction of AAV-rat-IL4 and evaluation of its modulating effect on Aβ (1-42)-induced proinflammatory cytokines in primary microglia and the B92 cell line by quantitative PCR assay. Jundishapur J Microbiol 2016; 9(3)e30444
[http://dx.doi.org/10.5812/jjm.30444] [PMID: 27217922]
[76]
Stenovec M, Trkov S, Lasič E, et al. Expression of familial Alzheimer disease presenilin 1 gene attenuates vesicle traffic and reduces peptide secretion in cultured astrocytes devoid of pathologic tissue environment. Glia 2016; 64(2): 317-29.
[http://dx.doi.org/10.1002/glia.22931] [PMID: 26462451]
[77]
Oksanen M, Petersen AJ, Naumenko N, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s disease. Stem Cell Reports 2017; 9(6): 1885-97.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.016] [PMID: 29153989]
[78]
Hopp SC, Royer SE, D’Angelo HM, Kaercher RM, Fisher DA, Wenk GL. Differential neuroprotective and anti-inflammatory effects of L-type voltage dependent calcium channel and ryanodine receptor antagonists in the substantia nigra and locus coeruleus. J Neuroimmune Pharmacol 2015; 10(1): 35-44.
[http://dx.doi.org/10.1007/s11481-014-9568-7] [PMID: 25318607]
[79]
Hopp SC, Royer SE, D’Angelo HM, et al. 129. Blockade of L-type voltage dependent calcium channels or ryanodine receptors during chronic neuroinflammation improves spatial memory and reduces expression of inflammatory markers. Brain Behav Immun 2014; 40e38.
[http://dx.doi.org/10.1016/j.bbi.2014.06.149]
[80]
Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: Three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 1997; 119(3): 260-72.
[http://dx.doi.org/10.1006/jsbi.1997.3885] [PMID: 9245766]
[81]
Csordás G, Várnai P, Golenár T, et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 2010; 39(1): 121-32.
[http://dx.doi.org/10.1016/j.molcel.2010.06.029] [PMID: 20603080]
[82]
García-Pérez C, Hajnóczky G, Csordás G. Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle. J Biol Chem 2008; 283(47): 32771-80.
[http://dx.doi.org/10.1074/jbc.M803385200] [PMID: 18790739]
[83]
Kopach O, Kruglikov I, Pivneva T, Voitenko N, Fedirko N. Functional coupling between ryanodine receptors, mitochondria and Ca(2+) ATPases in rat submandibular acinar cells. Cell Calcium 2008; 43(5): 469-81.
[http://dx.doi.org/10.1016/j.ceca.2007.08.001] [PMID: 17889347]
[84]
Jakob R, Beutner G, Sharma VK, et al. Molecular and functional identification of a mitochondrial ryanodine receptor in neurons. Neurosci Lett 2014; 575: 7-12.
[http://dx.doi.org/10.1016/j.neulet.2014.05.026] [PMID: 24861510]
[85]
Gibson GE, Thakkar A. Interactions of mitochondria/metabolism and calcium regulation in Alzheimer’s disease: A calcinist point of view. Neurochem Res 2017; 42(6): 1636-48.
[http://dx.doi.org/10.1007/s11064-017-2182-3] [PMID: 28181072]
[86]
Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J 2012; 31(21): 4106-23.
[http://dx.doi.org/10.1038/emboj.2012.202] [PMID: 22892566]
[87]
Contino S, Porporato PE, Bird M, et al. Presenilin 2-dependent maintenance of mitochondrial oxidative capacity and morphology. Front Physiol 2017; 8: 796.
[http://dx.doi.org/10.3389/fphys.2017.00796] [PMID: 29085303]
[88]
Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011; 25(1): 78-88.
[http://dx.doi.org/10.1096/fj.10-157230] [PMID: 20833873]
[89]
Peng J, Liang G, Inan S, et al. Early and chronic treatment with dantrolene blocked later learning and memory deficits in older Alzheimer’s triple transgenic mice. Alzheimers Dement 2011; 7(4): e67
[http://dx.doi.org/10.1016/j.jalz.2011.09.141]
[90]
Wu Z, Yang B, Liu C, et al. Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord 2015; 29(3): 184-91.
[http://dx.doi.org/10.1097/WAD.0000000000000075] [PMID: 25650693]
[91]
Peng J, Liang G, Inan S, et al. Dantrolene ameliorates cognitive decline and neuropathology in Alzheimer triple transgenic mice. Neurosci Lett 2012; 516(2): 274-9.
[http://dx.doi.org/10.1016/j.neulet.2012.04.008] [PMID: 22516463]
[92]
Chakroborty S, Briggs C, Miller MB, et al. Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer’s disease. PLoS One 2012; 7(12) e52056
[http://dx.doi.org/10.1371/journal.pone.0052056] [PMID: 23284867]
[93]
Zhang H, Liu J, Sun S, Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2015; 45(2): 561-80.
[http://dx.doi.org/10.3233/JAD-142427] [PMID: 25589721]
[94]
Takeshima H, Nishimura S, Matsumoto T, et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 1989; 339(6224): 439-45.
[http://dx.doi.org/10.1038/339439a0] [PMID: 2725677]
[95]
Rossi D, Sorrentino V. Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium 2002; 32(5-6): 307-19.
[http://dx.doi.org/10.1016/S0143416002001987] [PMID: 12543091]
[96]
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2(11) a003996
[http://dx.doi.org/10.1101/cshperspect.a003996] [PMID: 20961976]
[97]
Zhao F, Li P, Chen SR, Louis CF, Fruen BR. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. J Biol Chem 2001; 276(17): 13810-6.
[http://dx.doi.org/10.1074/jbc.M006104200] [PMID: 11278295]
[98]
Choi RH, Koenig X, Launikonis BS. Dantrolene requires Mg2+ to arrest malignant hyperthermia. Proc Natl Acad Sci USA 2017; 114(18): 4811-5.
[http://dx.doi.org/10.1073/pnas.1619835114] [PMID: 28373535]
[99]
Cannon SC. Mind the magnesium, in dantrolene suppression of malignant hyperthermia. Proc Natl Acad Sci USA 2017; 114(18): 4576-8.
[http://dx.doi.org/10.1073/pnas.1704103114] [PMID: 28442565]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy