[1]
Shimauchi, H.; Nemoto, E.; Ishihata, H.; Shimomura, M. Possible functional scaffolds for periodontal regeneration. Jpn. Dent. Sci. Rev., 2013, 49, 118-130.
[2]
Ramseier, C.A.; Rasperini, G.; Batia, S.; Giannobile, W.V. Advanced reconstructive technologies for periodontal tissue repair. Periodontol. 2000, 2012, 59, 185-202.
[3]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 2008, 17, S467-S479.
[4]
Boccaccini, A.R.; Blaker, J.J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices, 2005, 2, 303-317.
[5]
Chan, B.P.; Hui, T.Y.; Chan, O.C.; So, K.F.; Lu, W.; Cheung, K.M.; Salomatina, E.; Yaroslavsky, A. Photochemical cross-linking for collagen-based scaffolds: A study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng., 2007, 13, 73-85.
[6]
Kurella, A.; Dahotre, N.B. Review paper: surface modification for bioimplants: The role of laser surface engineering. J. Biomater. Appl., 2005, 20, 5-50.
[7]
Brodie, J.C.; Goldie, E.; Connel, G.; Merry, J.; Grant, M.H. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J. Biomed. Mater. Res. A, 2005, 73, 409-421.
[8]
Chevalier, E.; Chulia, D.; Pouget, C.; Viana, M. Fabrication of porous substrates: A review of processes using pore forming agents in the biomaterial field. J. Pharm. Sci., 2008, 97, 1135-1154.
[9]
Yang, S.; Leong, K.F.; Du, Z.; Chua, C.K. The design of scaffolds for use in tissue engineering: Part II. Rapid prototyping techniques. Tissue Eng., 2002, 8, 1-11.
[10]
Chai, C.; Leong, K.W. Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther., 2007, 15, 467-480.
[11]
Mallick, S.; Tripathi, S.; Srivastava, P. Advancement in scaffolds for bone tissue engineering: A review. IOSR J. Pharm. Biol. Sci, 2015, 10, 37-54.
[12]
Badylak, S.F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol., 2004, 12, 367-377.
[13]
Okano, T.; Yamada, N.; Sakai, H.; Sakurai, Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res., 1993, 27, 1243-1251.
[14]
Tsuda, Y.; Shimizu, T.; Yamato, M.; Kikuchi, A.; Sasagawa, T.; Sekiya, S.; Kobayashi, J.; Chen, G.; Okano, T. Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials, 2007, 28, 4939-4946.
[15]
Lanza, R.P.; Hayes, J.L.; Chick, W.L. Encapsulated cell technology. Nat. Biotechnol., 1996, 14, 1107-1111.
[16]
Orive, G.; Hernandez, R.M.; Rodrıguez, G.A.; Calafiore, R.; Chang, T.M.; de Vos, P.; Hortelano, G.; Hunkeler, D.; Lacı´, K.I.; Pedraz, J.L. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol., 2004, 22, 87-92.
[17]
Chan, B.P.; Chan, G.C.F.; Wong, H.L.; Cheung, P.T.; Chan, D.; Cheah, K. Cell-matrix microsphere, associated products, methods for preparation and applications. Patent, 60/801, 975. 2007b
[18]
Chan, B.P.; Hui, T.Y.; Yeung, C.W.; Li, J.; Mo, I.; Chan, G.C.F. Self-assembled collagen-human mesenchymal stem cell microspheres for regenerative medicine. Biomaterials, 2007, 28, 4652-4666.
[19]
Hui, T.Y.; Cheung, K.M.C.; Cheung, W.L.; Chan, D.; Chan, B.P. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration. Biomaterials, 2008, 29, 3201-3212.
[20]
Locci, P.; Calvitti, M.; Belcastro, S.; Pugliese, M.; Guerra, M. Phenotypic expression of gingival fibroblasts cultured on membranes used in guided tissue regeneration. J. Periodontol., 1997, 68, 857-863.
[21]
Schlegel, A.K.; Möhler, H.; Busch, F.; Mehl, A. Preclinical and clinical studies of a collagen membrane(Bio-Gide). Biomaterials, 1997, 18, 535-538.
[22]
Minabe, M.; Kodarna, T.; Kogou, T.; Tamura, T.; Hori, T.; Watanbe, Y. T, Miyata. Different cross-linked types of collagen implanted in rat palatal gingiva. J. Periodontol., 1989, 60, 35-43.
[23]
Kodama, T.; Minabe, M.; Hori, T.; Watanabe, Y. The effect of various concentrations of collagen barrier on periodontal wound healing. J. Periodontol., 1989, 60, 205-210.
[24]
Mitchell, R. A new biological dressing for areas denuded of mucous membrane. Br. Dent. J., 1983, 155, 346-348.
[25]
Iglhaut, J.; Aukhil, I.; Simpson, D.M.; Johnston, M.C.; Kock, G. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J. Periodontal Res., 1988, 23, 107-117.
[26]
Colangelo, P.; Piatelli, A.; Barrucci, S.; Trisi, P.; Formisano, G.; Caiazza, S. Bone regeneration guided by resorbable collagen membranes in rabbits. A pilot study. Implant Dent., 1993, 2, 101-105.
[27]
Mukherjee, D.P.; Tunkle, A.S.; Roberts, R.A.; Clavenna, A.; Rogers, S.; Smith, D. An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. J. Biomed. Mater. Res., 2003, 67, 603-609.
[28]
Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science, 2002, 295, 1014-1017.
[29]
Yoshikawa, M.; Tsuji, N.; Shimomura, Y.; Hayashi, H.; Ohgushi, H. Effects of laminin for osteogenesis in porous hydroxyapatite. Macromol. Symp., 2007, 253, 172-178.
[30]
Mastrangelo, F.; Nargi, E.; Carone, L.; Dolci, M.; Caciagli, F.; Ciccarelli, R.; Maria, L.; Virginia, K.; Basha, S.; Pio, C.; Stefano, T. Tridimensional response of human dental follicular stem cells onto a synthetic hydroxyapatite scaffold. J. Health Sci., 2008, 54, 154-161.
[31]
Losquadro, W.D.; Tatum, S.A.; Allen, M.J.; Mann, K.A. Polylactide-co-glycolide fiber-reinforced calcium phosphate bone cement. Arch. Facial Plast. Surg., 2009, 11, 104-109.
[32]
Becher, P.F.; Hsueh, C.H.; Angelini, P.; Tiegs, T.N. Toughening behavior in Whisker-reinforced ceramic matrix composites. J. Am. Ceram. Soc., 1988, 71, 1050-1061.
[33]
Ahn, E.S.; Gleason, N.J.; Ying, J.Y. The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite-based nanocomposites. J. Am. Ceram. Soc., 2005, 88, 3374-3379.
[34]
Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 2006, 51, 427-556.
[35]
Chiara, G.; Letizia, F.; Lorenzo, F.; Edoardo, S.; Diego, S.; Stefano, S.; Eriberto, B.; Barbara, Z. Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int. J. Mol. Sci., 2012, 13, 737-757.
[36]
Yoon, S.Y.; Park, H.C.; Jin, H.H.; Lee, W.K. Microstructural and mechanical properties of polymer-based scaffolds reinforced by hydroxyapatite. Mater. Sci. Forum, 2007, 544-545, 765-768.
[37]
Xu, C-Z.; Yang, W-G.; He, X-F.; Zhou, L-T.; Han, X-K.; Xu, X.F. Vascular endothelial growth factor and nano-hydroxyapatite/collagen composite in the repair of femoral defect in rats. J. Clin. Rehabil. Tissue Eng. Res, 2011, 15, 7118-7122.
[38]
Alvarez, K.; Nakajima, H. Metallic scaffolds for bone regeneration. Materials (Basel), 2009, 2, 790-832.
[39]
Ge, Z.; Jin, Z.; Cao, T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater., 2008, 3, 1-11.
[40]
Lin, K.; Zhang, M.; Zhai, W.; Qu, H.; Chang, J. Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair. J. Am. Ceram. Soc., 2011, 94, 99-105.
[41]
Zavan, B.; Vindigni, V.; Vezzù, K.; Zorzato, G.; Luni, C.; Abatangelo, G.; Elvassore, N.; Cortivo, R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: A placebo-controlled study. J. Mater. Sci., 2009, 20, 235-247.
[42]
Froum, S.; Cho, S.G.; Rosenberg, E.; Rohrer, M.; Tarnow, D. Histological comparison of healing extraction sockets implanted with bioactive glass or demineralized free-dried bone allograft: A pilot study. J. Periodontol., 2002, 73, 94-102.
[43]
Zhang, R.; Ma, P.X. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. A, 1999, 45, 285-293.
[44]
Ma, P.X.; Zhang, R. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. A, 2001, 4, 469-477.
[45]
Hou, Q.; Grijpma, D.W.; Feijen, J. Preparation of porous poly(ε-caprolactone) structures. Macromol. Rapid Commun., 2002, 23, 247-252.
[46]
Bryant, J.; Anseth, K.S. The effects of scaffold thickness on tissue engineered cartilage in photo-crosslinked poly (ethylene oxide) hydrogels. Biomaterials, 2001, 22, 619-626.
[47]
Lee, J.; Shanbhag, S.; Kotov, N.A. Inverted colloidal crystals as three dimensional microenvironments of cellular co-structures. J. Mater. Chem., 2006, 1, 3558-3564.
[48]
Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3, 232-238.
[49]
Geng, X.; Kwon, O.H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26, 5427-5432.
[50]
Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005, 26, 2603-2610.
[51]
Mo, X.M.; Xu, C.Y.; Kotaki, M.; Ramakrishna, S.; Electrospun, P. LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 2004, 25, 1883-1890.
[52]
Vasita, R.; Katti, D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomedicine, 2006, 1, 15-30.
[53]
Singh, M.; Sandhu, B.; Scurto, A.; Berkland, C.; Detamore, M.S. Microsphere-based scaffolds for cartilage tissue engineering: Using subcritical CO2 as a sintering agent. Acta Biomater., 2010, 6, 137-143.
[54]
Ravivarapu, H.B.; Burton, K.; DeLuca, P.P. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur. J. Pharm. Biopharm., 2000, 50, 263-270.
[55]
Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 3413-3431.
[56]
Hench, L.L. Bioceramics: From concept to clinic. Am. Ceram. Soc. Bull., 1993, 74(4), 93-98.
[57]
Hentrich, R.L., Jr; Graves, G.A., Jr; Stein, H.G.; Bajpai, P.K. Evaluation of inert and resorbable ceramics for future clinical orthopedic applications. J. Biomed. Mater. Res. A, 1971, 5, 25-51.
[58]
Park, J.B.; Lakes, R.S. Biomaterials-An Introduction, 2nd ed; Plenum Press: New York, 1992.
[59]
Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, S.D. Polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci., 2011, 290602, 19.
[60]
Kang, H.G.; Kim, S.Y.; Lee, Y.M. Novel porous gelatin scaffolds by overrun/particle leaching process for tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 79, 388-397.
[61]
Dahms, S.E.; Piechota, H.J.; Dahiya, R.; Lue, T.F.; Tanagho, E.A. Composition and biomechanical properties of the bladder acellular matrix graft: Comparative analysis in rat, pig and human. Br. J. Urol., 1998, 82, 411-419.
[62]
Tran, K.T.; Griffith, L.; Wells, A. Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen., 2004, 12, 262-268.
[63]
Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol., 2004, 36, 1031-1037.
[64]
Selvig, K.; Kersten, B.; Chamberlain, D.; Wikesjö, U.M.; Nilvéus, R.E. Regenerative surgery of intrabony periodontal defects using ePTFE barrier membranes: Scanning electron microscopic evaluation of retrieved membranes versus clinical healing. J. Periodontol., 1992, 63, 974-978.
[65]
Couri, C.J.; Maze, G.; Hinkson, W.D.; Collins, B.H.; Dawson, D.V. Medical grade calcium sulfate hemihydrate versus expanded polytetrafluoroethylene in the treatment of mandibular class II furcations. J. Periodontol., 2002, 73, 1352-1359.
[66]
Mellado, J.; Salkin, L.M.; Freedman, A.L.; Stein, M.D. A comparative study of Eptfe periodontal membranes with and without decalcified freeze-dried bone allografts for the regeneration of interproximal intraosseous defects. J. Periodontol., 1995, 66, 751-755.
[67]
Hoffman, O.; Bartee, B.K.; Beaumont, C.; Kasaj, A.; Deli, G.; Zafiropoulos, G.G. Alveolar bone preservation in extraction sockets using non-resorbable dptfe membranes: A retrospective non-randomized study. J. Periodontol., 2008, 79, 1355-1369.
[68]
Dőri, F.; Arweiler, N.; Szàntó, E.; Àgics, A.; Gera, I. Ten-year results following treatment of intrabony defects with an enamel matrix derivative combined with either a natural bone mineral or a β- tricalcium phosphate. J. Periodontol., 2013, 84, 749-757.
[69]
Nevins, M.; Kao, R.T.; Mcguire, M.K.; McClain, P.K.; Hinrichs, J.E.; McAllister, B.S.; Reddy, M.S.; Nevins, M.L.; Genco, R.J.; Lynch, S.E.; Giannobile, W.V. Platelelet-derived growth factor promotes periodontal regeneration in localized osseous defects: A 36 month extension results from a randomized controlled, double masked clinical trial. J. Periodontol., 2013, 84, 456-464.
[70]
Camargo, P.M.; Lekovic, V.; Weinlaender, M.; Divnic-Resnik, T.; Pavlovic, M.; Kenney, E.B. A surgical re-entry study on the influence of platelet-rich plasma in enhancing the regenerative effects of bovine porous bone mineral and guided tissue regeneration in the treatment of intrabony defects in humans. J. Periodontol., 2009, 80, 915-923.
[71]
Kinoshita, A.; Oda, S.; Takahashi, K.; Yokota, S.; Ishikawa, I. Periodontal regeneration by application of recombinant human bone morphogenetic protein-2 to horizontal circumferential defects created by experimental periodontitis in beagle dogs. J. Periodontol., 1997, 68, 103-109.
[72]
Hynes, K.; Menicanin, D.; Gronthos, S.; Bartord, P.M. Clinical utility of stem cells for periodontal regeneration. Periodontol. 2000, 2012, 59, 203-227.
[73]
Tsumanuma, Y.; Iwata, T.; Washio, K.; Yoshida, T.; Yamada, A.; Takagi, R.; Ohno, T.; Lin, K.; Yamato, M.; Ishikawa, I.; Okano, T.; Izumi, Y. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine one-wall defect model. Biotechnology, 2011, 32, 5819-5825.
[74]
O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26, 433-441.
[75]
Sicchieri, L.G.; Crippa, G.E.; de Oliveira, P.T.; Beloti, M.M.; Rosa, A.L. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering. J. Tissue Eng. Regen. Med., 2012, 6, 155-162.
[76]
Salem, A.K.; Stevens, R.; Pearson, R.G.; Davies, M.C.; Tendler, S.J.; Roberts, C.J.; Williams, P.M.; Shakesheff, K.M. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J. Biomed. Mater. Res., 2002, 61, 212-217.
[77]
Lowery, J.L.; Datta, N.; Rutledge, G.C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials, 2010, 31, 491-504.
[78]
Haugh, M.G.; Jaasma, M.J.; O’Brien, F.J. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J. Biomed. Mater. Res. A, 2009, 89, 363-369.
[79]
Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell, 2006, 126, 677-689.
[80]
Trappmann, B.; Gautrot, J.E.; Connelly, J.T.; Strange, D.G.; Li, Y.; Oyen, M.L.; Stuart, M.A.C.; Boehm, H.; Li, B.; Vogel, V.; Spatz, J.P.; Watt, F.M.; Huck, W.T.S. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater., 2012, 11, 642-649.
[81]
Leukers, B.; Gülkan, H.; Irsen, S.H.; Milz, S.; Tille, C.; Schieker, M.; Seitz, H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med., 2005, 16, 1121-1124.
[82]
Xue, S.H.; Lv, P.J.; Wang, Y.; Zhao, Y.; Zhang, T. Three dimensional bioprinting technology of human dental pulp cells mixtures. J. Peking Univ. Health Sci, 2013, 45, 105-108.