[1]
O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. Genetic approaches to study of biofilms. Methods Enzymol., 1999, 310, 91-109.
[2]
Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb. Perspect. Med., 2013, 3, a010306.
[3]
Sintim, H.O.; Smith, J.A.; Wang, J.; Nakayama, S.; Yan, L. Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem., 2010, 2, 1005-1035.
[4]
Zeng, Z.; Qian, L.; Cao, L.; Tan, H.; Huang, Y.; Xue, X.; Shen, Y.; Zhou, S. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2008, 79, 119-126.
[5]
Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Hoiby, N.; Kjelleberg, S.; Givskov, M. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology, 2002, 148, 87-102.
[6]
Park, S.; Kim, H.S.; Ok, K.; Kim, Y.; Park, H.D.; Byun, Y. Design, synthesis and biological evaluation of 4-(alkyloxy)-6-methyl-2H-pyran-2-one derivatives as quorum sensing inhibitors. Bioorg. Med. Chem. Lett., 2015, 25, 2913-2917.
[7]
Cegelski, L.; Pinkner, J.S.; Hammer, N.D.; Cusumano, C.K.; Hung, C.S.; Chorell, E.; Aberg, V.; Walker, J.N.; Seed, P.C.; Almqvist, F.; Chapman, M.R.; Hultgren, S.J. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol., 2009, 5, 913-919.
[8]
Rogers, S.A.; Melander, C. Construction and screening of a 2-aminoimidazole library identifies a small molecule capable of inhibiting and dispersing bacterial biofilms across order, class, and phylum. Angew. Chem. Int. Ed. Engl., 2008, 47, 5229-5231.
[9]
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Leonetti, J.P. In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother., 2007, 51, 3117-3121.
[10]
Reshamwala, S.M.; Mamidipally, C.; Pissurlenkar, R.R.; Coutinho, E.C.; Noronha, S.B. Evaluation of risedronate as an antibiofilm agent. J. Med. Microbiol., 2016, 65, 9-18.
[11]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov., 2007, 6, 29-40.
[12]
Hayakawa, S.; Minato, H.; Katagiri, K. The ilicicolins, antibiotics from Cylindrocladium ilicicola. J. Antibiot. , 1971, 24, 653-654.
[13]
Dickinson, J.M.; Hanson, J.R.; Hitchcock, P.B.; Claydon, N. Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J. Chem. Soc., Perkin Transactions. 1, 1989, 11, 1885-1887.
[14]
S. Omura, H. Tomoda, K. Kimura, D. Z. Zhent, H. Kumagai, K. Igarashi, N. Imamura, Y. Takahashi, Y. Tanaka and Y. Iwai (1988) Atpenins, new antifungal antibiotics produced by Penicillium sp. Production, isolation, physico-chemical and biological properties. J. Antibiot. , 1988, 41, 1769-1773.
[15]
H. Kumagai, H. Nishida, N. Imamura, H. Tomoda, S. Omura and J. Bordner (1990) The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J. Antibiot. , 1990, 43, 1553-1558.
[16]
Alfatafta, A.A.; Gloer, J.B.; Scott, J.A.; Malloch, D. Apiosporamide, A new antifungal agent from the coprophilous fungus Apiospora montagnei. J. Nat. Prod., 1994, 57, 1696-1702.
[17]
Shibazaki, M.; Taniguchi, M.; Yokoi, T.; Nagai, K.; Watanabe, M.; Suzuki, K.; Yamamoto, T. YM-215343, a novel antifungal compound from Phoma sp. QN04621. J. Antibiot., 2004, 57, 379-382.
[18]
Jessen, H.J.; Gademann, K. 4-Hydroxy-2-pyridone alkaloids: Structures and synthetic approaches. Nat. Prod. Rep., 2010, 27, 1168-1185.
[19]
David John Haydon, L.G.C. Antibacterial condensed thiazoles US 8299065 B2 2012.
[20]
Lee, B.H.; Clothier, M.F.; Dutton, F.E.; Conder, G.A.; Johnson, S.S. Anthelmintic beta-hydroxyketoamides (BKAs). Bioorg. Med. Chem. Lett., 1998, 8, 3317-3320.
[21]
Altaf, M.; Miller, C.H.; Bellows, D.S.; O’Toole, R. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis (Edinb.), 2010, 90, 333-337.
[22]
Shi, T.; Fu, T.; Xie, J. Polyphosphate deficiency affects the sliding motility and biofilm formation of Mycobacterium smegmatis. Curr. Microbiol., 2011, 63, 470-476.
[23]
Abidi, S.H.; Ahmed, K.; Sherwani, S.K.; Bibi, N.; Kazmi, S.U. Detection of Mycobacterium smegmatis biofilm and its control by natural agents. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 801-812.
[24]
Sachan, T.K.; Kumar, V. Antibiotic Susceptibility in Biofilms of Mycobacterium smegmatis. Int. J. App. Sci. Biotechnol., 2015, 3, 635-641.
[25]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpe-nsive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46, 2720-2722.
[27]
Zhao, Y.H.; Abraham, M.H.; Le, J.; Hersey, A.; Luscombe, C.N.; Beck, G.; Sherborne, B.; Cooper, I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res., 2002, 19, 1446-1457.
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[29]
Zaheer, Z.; Khan, F.A.; Sangshetti, J.N.; Patil, R.H.; Lohar, K.S. Novel amalgamation of phthalazine-quinolines as biofilm inhibi-tors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2016, 26, 1696-1703.
[30]
Boyer, S.; Arnby, C.H.; Carlsson, L.; Smith, J.; Stein, V.; Glen, R.C. Reaction site mapping of xenobiotic biotransformations. J. Chem. Inf. Model., 2007, 47, 583-590.
[31]
Boyer, S.; Zamora, I. New methods in predictive metabolism. J. Comput. Aided Mol. Des., 2002, 16, 403-413.
[32]
Carlsson, L.; Spjuth, O.; Adams, S.; Glen, R.C.; Boyer, S. Use of historic metabolic biotransformation data as a means of anticipating metabolic sites using MetaPrint2D and Bioclipse. BMC Bioinformatics, 2010, 11, 362.
[33]
Syal, K.; Maiti, K.; Naresh, K.; Avaji, P.G.; Chatterji, D.; Jayaraman, N. Synthetic arabinomannan glycolipids impede myco-bacterial growth, sliding motility and biofilm structure. Glycoconj. J., 2016, 33, 1-15.