[1]
Rao, A.A.; Sridhar, G.R.; Das, U.N. Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med. Hypotheses, 2007, 69, 1272-1276.
[2]
Kaplay, S.S. Acetylcholinesterase and butyrylcholinesterase of developing human brain. Biol. Neonate, 1976, 28, 65-73.
[3]
Geula, C.; Mesulam, M.M. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord., 1995, 9, 23-28.
[4]
Shaik, J.B.; Palaka, B.K.; Penumala, M.; Kotapati, K.V.; Devineni, S.R.; Eadlapalli, S.; Darla, M.M.; Ampasala, D.R.; Vadde, R.; Amooru, G.D. Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 107, 219-232.
[5]
Tarazi, H.; Odeh, R.A.; Al-Qawasmeh, R.; Yousef, I.A.; Voelter, W.; Al-Tel, T.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 125, 1213-1224.
[6]
Thathiah, A.; De-Strooper, B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci., 2011, 12, 73-87.
[7]
Zhao, L.M.; Jin, H.S.; Sun, L.P.; Piao, H.R.; Quan, Z.S. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 5027-5029.
[8]
Abdel-Aziz, M.; Abuo-Rahma, G.A.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44, 3480-3487.
[9]
Pande, P.S.; Khan, S.H.; Malpani, M.O. Evaluation of qualitative and quantitative antioxidant activity of some pyrazolines. World J. Pharm. Sci., 2017, 6(3), 1085-1089.
[10]
Dipankar, B.; Panneerselvam, P.; Asish, B. Synthesis, characterization and evaluation of analgesic, anti-inflammatory, ulcerogenic potential of some 2-pyrazoline derivatives. Der. Pharma. Chemica., 2012, 4, 1679-1688.
[11]
Jadhav, S.B.; Rathod, S.D. Synthesis of Some Novel 3, 5-Diaryl-N-chalcone-2-pyrazoline Derivatives and Evaluation of their Antimicrobial Activity. Chem. Sci. Trans., 2016, 5, 109-116.
[12]
EI-Sabbagh, O. I.; Baraka, M.M.; Ibrahim, S.M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44, 3746-3753.
[13]
Abdel-Wahab, B.F.; Abdel-Aziz, H.A.; Ahmed, E.M. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur. J. Med. Chem., 2009, 44, 2632-2635.
[14]
Solankee, A.; Tailor, R. Synthesis, Characterisation and Biological Screening of s-Triazine Based Chalcones and its Derivatization into Phenyl Pyrazolines, Isoxazoles. ILCPA, 2015, 47, 109-119.
[15]
Salum, L.B.; Altei, W.F.; Chiaradia, L.D.; Cordeiro, M.N.S.; Canevarolo, R.R.; Melo, C.P.; Winter, E.; Mattei, B.; Daghestani, H.N.; Santos-Silva, M.C.; Creczynski-Pasa, T.B.; Yunes, R.A.; Yunes, J.A.; Andricopulo, A.D.; Day, B.W.; Nunes, R.J.; Vogt, A. Cytotoxic 3,4,5-trimethoxychalcones as mitotic arresters and cell migration inhibitors. Eur. J. Med. Chem., 2013, 63, 501-510.
[16]
Gupta, R.A.; Kaskhedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22, 3863-3880.
[17]
Tomar, V.; Bhattacharjee, G. Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S.K. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur. J. Med. Chem., 2010, 45, 745-751.
[18]
Rizvi, S.U.F.; Siddiqui, H.L.; Johns, M.; Detorio, M.; Schinazi, R.F. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res., 2012, 21, 3741-3749.
[19]
Tripathi, A.; Srivastava, U.C. Acetylcholinesterase: A versatile enzyme of nervous system. Ann. Neurosci., 2008, 15, 106-111.
[20]
Masson, P.; Carletti, E.; Nachon, F. Structure, Activities and Biomedical Applications of Human Butyrylcholinesterase. Protein Pept. Lett., 2009, 16, 1215-1224.
[21]
Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science, 1991, 253, 872-879.
[22]
Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr., 2000, 71, 621S-629S.
[23]
Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Synthesis of biologically active chalcon analogues via claisen-schmidt condensation in solvent-free conditions: Supported mixed addenda heteropoly acid as a heterogeneous catalyst. Catal. Commun., 2008, 9, 1924-1927.
[24]
Murtaza, S.; Abbas, A.; Iftikhar, K.; Shamim, S.; Akhtar, M.S.; Razzaq, Z.; Naseem, K.; Elgorban, A.M. Synthesis, biological activities and docking studies of novel 2,4-dihydroxybenzaldehyde based Schiff base. Med. Chem. Res., 2016, 25, 2860-2871.
[25]
Batovska, D.; Parushev, S.; Stamboliyska, B.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur. J. Med. Chem., 2009, 44, 2211-2218.
[26]
Ellman, G.L.; Courtney, K.D.; Andres, Jr , V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-90.
[27]
Abbas, A.; Murtaza, S.; Tahir, M.N.; Shamim, S.; Sirajuddin, M.; Rana, U.A.; Naseem, K.; Rafique, H. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide. J. Mol. Struct., 2016, 1117, 269-275.
[28]
Murtaza, S.; Akhtar, M.S.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim, S. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. J. Saudi Chem. Soc., 2017, 21, S359-S372.
[29]
Nachon, F.; Carletti, E.; Ronco, C.; Trovaslet, M.; Nicolet, Y.; Jean, L.; Renard, P.Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem. J., 2013, 453, 393-399.
[30]
ACD/ChemSketch, in Advanced Chemistry Development, Inc., Toronto, On, Canada, 2015.
[31]
D.S., Visualizer Accelrys software inc; Discovery Studio Visualizer, 2005, p. 2.
[32]
Murtaza, S.; Akhtar, M.S.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim, S. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. J. Saudi Chem. Soc., 2017, 21, S359-S372.