[1]
Dickson, M.; Gagnon, J.P. Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discov., 2004, 3, 417-429.
[2]
DiMasi, J.; Hansen, R.; Grabowski, H. The price of innovation: New estimates of drug development costs. J. Health Econ., 2003, 22, 151-185.
[3]
Adams, C.P.; Brantner, V.V. Estimating the cost of new drug development: Is it really 802 million dollars? Drug Dev., 2006, 25, 23-24.
[4]
Viegas-Junior, C.; Danuello, A.; Bolzani, V.D.S.; Barreiro, E.J.; , C.A.M. Fraga Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14, 1829-1852.
[5]
Fortin, S.; Berube, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8, 1029-1047.
[6]
Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res., 2008, 41, 69-77.
[7]
Hulsman, N.; Medema, J.P.; Bos, C.; Jongejan, A.; Leurs, R.; Smit, M.J.; de Esch, I.J.; Richel, D.; Wijtmans, M. Chemical insights in the concept of hybrid drugs: the antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. J. Med. Chem., 2007, 50, 2424-2431.
[8]
Bode, A.M.; Dong, Z.G. Cancer prevention research - then and now. Nat. Rev. Cancer, 2009, 9, 508-516.
[9]
Erdmann, O.L. Untersuchungen uber den Indigo. J. Prakt. Chem., 1840, 19(1), 321-362.
[10]
Laurent, A. Recherches sur l’indigo. Ann. Chim. Phys., 1840, 3(3), 393-434.
[11]
Guo, Y.; Chen, F. TLC-UV-spectrophotometric and TLC-scanning determination of isatin in leaf of Isatis. Zhongcaoyao, 1986, 17, 8-11.
[12]
Bergman, J.; Lindstorm, J.O.; Tilstam, U. The structure and properties of some indolic constituents in the Couroupita guianensis aubl. Tetrahedron, 1985, 4, 12879-12881.
[13]
Wei, L.; Wang, Q.; Liu, X. Application of thin-layer chromatographyin quality control of Chinese medicinal preparations.II. Quliative analysis of Chinese Chinese medicinal preparations of Chansu. Yaowu Fenxi Zazhi, 1982, 2, 288-291.
[14]
Da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The Chemistry of Isatins: a Review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12(3), 273-324.
[15]
Medvedev, A.E.; Clow, A.; Sandler, M.; Glover, V. Isatin: A link between natriuretic peptides and monoamines? Biochem. Pharmacol., 1996, 52(3), 385-391.
[16]
Da Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: a review from 1975 to 1999. J. Braz. Chem. Soc., 2001, 12, 273-324.
[17]
Batanero, B.; Barba, F. Electrosynthesis of tryptanthrin. Tetrahedron Lett., 2006, 47, 8201-8203.
[18]
Aboul-Fadl, T.; Bin-Jubair, F.A.S.; Aboul-Wafa, O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem., 2010, 45, 4578-4586.
[19]
Domenech, A.; Domenech-Carbo, M.T.; Sanchez del Rio, M. Vazquez de Agredos, Pascual, M.L.; Lima, E. Maya Blue as a nanostructured polyfunctional hybrid organic-inorganic material: The need to change paradigms. New J. Chem., 2009, 33, 2371-2379.
[20]
Sumpter, W.C. The chemistry of isatin. Chem. Rev., 1944, 34, 393-434.
[21]
Popp, F.D.; Katritzky, A.R.; Boulton, A.J. The Chemistry of Isatin.inAdvances in Heterocyclic Chemistry; Academic Press, 1975, pp. 1-58.
[22]
Mesropyan, E.G.; Avetisyan, A.A. New isatin derivatives. Russ. J. Org. Chem., 2009, 45, 1583-1593.
[23]
Ivashchenko, A.V.; Dziomko, V.M. Reactions of isatin and its derivatives with aromatic and heterocyclic ortho-diamines. Usp. Khim., 1977, 46, 228-238.
[24]
Shvekhgeimer, M.G.A. Synthesis of heterocyclic compounds by
the cyclization of isatin and its derivatives (review). Chem. Heterocycl.
Compd. (Engl. Transl.) 1996, 32, 249.
[25]
Joshi, K.C.; Joshi, R. Isatin: A versatile molecule for the synthesis of novel spiro heterocycles. J. Indian Chem. Soc., 1999, 76, 643-649.
[26]
Medvedev, A.; Igosheva, N.; Crumeyrolle-Arias, M.; Glover, V. Isatin: role in stress and anxiety.Stress, 2005. 8, 175 -183.59
[27]
Medvedev, A.; Buneeva, O.; Glover, V. Biological targets for isatin and its analogues: implications for therapy. Biologics Targets Therapy, 2007, 1, 151-162.
[28]
Chen, G.; Hao, X. Recent studies on the bioactivities of isatin. Tianran Chanwu Yanjiu Yu Kaifa., 2010, 22, 356-360.
[29]
Pandeya, S.N.; Smitha, S.; Jyoti, M.; Sridhar, S.K. Biological activities of isatin and its derivatives. Acta Pharm., 2005, 55, 27-46.
[30]
Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Indole and Isatin Oximes: Synthesis, reactions, and biological activity. Chem. Heterocycl. Compd., 2003, 39, 3-35.
[31]
Karpenko, A.; Shibinskaya, M.; Zholobak, N.; Olevinskaya, Z.; Lyakhov, S.; Litvinova, L.; Spivak, M.; Andronati, S. Synthesis, DNA-binding, and interferon-inducing properties of isatin and benzoisatin hydrazones. Pharm. Chem. J., 2006, 40, 595-602.
[32]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000-2008. Anti-Cancer Agent. Med. Chem., 2009, 9, 397-414.
[33]
Pal, M.; Sharma, N.K. Priyanka; Jha, K.K. Synthetic and biological multiplicity of isatin. J. Adv. Sci. Res., 2011, 2, 35-44.
[34]
Bhrigu, B.; Pathak, D.; Siddiqui, N.; Alam, M.S.; Ahsan, W. Search for biological active Isatins: A short review. Int. J. Pharm. Sci. Drug Res., 2010, 2, 229-235.
[35]
Tarek, A.F.; Bin-Jubair, F.A.S. Anti-tubercular activity of isatin derivatives. Int. J. Res. Pharm. Sci., 2010, 1, 113-126.
[36]
Harris, P.A. Oxindole inhibitors of cyclin-dependent kinases as anti-tumor agents, taylor and francis group; Boca Raton, FL, USA, 2007.
[37]
Cerchiaro, G.; Ferreira, A.; Md, C. Oxindoles and copper complexes with oxindolederivatives as potential pharmacological agents. J. Braz. Chem. Soc., 2006, 17, 1473-1485.
[38]
Sing, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro- fused cyclic frameworks. Chem. Rev., 2012, 112, 6104-6155.
[39]
Pakravan, P.; Kashnian, S.; Khodae, M.M.; Harding, F.J. Biochemical and pharmacological characterization of isatin and its derivatives: From structure to activity. Pharmacol. Rep., 2013, 65, 313-335.
[40]
Karalı, N.; Gürsoy, A.; Kandemirli, F. Synthesis and structure- antituberculosis activity relationship of 1H-indole-2,3-dione derivatives. Bioorg. Med. Chem., 2007, 15, 5888-5904.
[41]
Young, D.W. Heterocyclic Chemistry.st ed. London: Longman
group Ltd.; ; , 1975.
[42]
Kumar, A.; Kumar, R. A Review on Synthesis of Schiff’s bases of 2-amino-4-phenylthiazole. Int. Res. J. Pharm., 2011, 2(6), 11-12.
[43]
Patel, N.B.; Shaikh, F.M. New 4-Thiazolidinones of Nicotinic Acid with 2-Amino-6-methylbenzothiazole and their Biological Activity. Sci. Pharm., 2010, 78(4), 753-765.
[44]
Bala, S.; Kamboj, S.; Kumar, A. Heterocyclic 1, 3, 4-oxadiazole compounds with diverse biological activities: A comprehensive review. J. Pharm. Res., 2010, 3(12), 2993-2997.
[45]
Motzer, R.J.; Michaelson, M.D.; Redman, B.G.; Hudes, G.R.; Wilding, G.; Figlin, R.A.; Ginsberg, M.S.; Kim, S.T.; Baum, C.M.; De Primo, S.E.; Li, J.Z.; Bello, C.L.; Theuer, C.P.; George, D.J.; Rini, B.I. Activity of SU11248, a multi-targeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2006, 24, 16-24.
[46]
Prenen, H.; Cools, J.; Mentens, N.; Folens, C.; Sciot, R.; Schoffski, P.; Van Oosterom, A.; Marynen, P.; Debiec-Rychter, M. Efficacy of the kinase inhibitor SU11248 against gastrointestinal stromal tumor mutants refractory to imatinib mesylate. Clin. Cancer Res., 2006, 12, 2622-2627.
[47]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99, 1-13.
[48]
Ramshid, P.K.; Jagadeeshan, S.; Krishnan, A.; Mathew, M.; Nair, S.A.; Pillai, M.R. Synthesis and in vitro evaluation of some isatin thiazolidinone hybrid analogues as anti-proliferative agents. Med. Chem., 2010, 6, 306-312.
[49]
Kaminskyy, D.; Khyluk, D.; Vasylenko, O.; Zaprutko, L.; Lesky, R. A Facile Synthesis and anticancer activity evaluation of Spiro [Thiazolidinone-Isatin] conjugates. Sci. Pharm., 2011, 79, 763-777.
[50]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis of new 4-Thiazolidinone-, pyrazoline-, and isatin based conjugates with promising antitumor activity. J. Med. Chem., 2012, 55, 8630-8641.
[51]
Sharma, M.; Sharma, S.; Buddhiraja, A.; Saxena, A.K.; Nepali, K.; Bedi, P.M.S. Synthesis and cytotoxicity studies of 3, 5-diaryl N-acetyl pyrazoline-isatin hybrids. Med. Chem. Res., 2014, 23, 4337-4344.
[52]
Solomon, V.R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem., 2009, 17(21), 7585-7592.
[53]
Hays, S.J.; Rice, M.J.; Ortwine, D.F.; Johnson, G.; Schwarz, R.D.; Boyd, D.K.; Copeland, L.F.; Vartanian, M.G.; Boxer, P.A. Substituted 2-benzothiazolamines as sodium flux inhibitors: quantitative structure-activity relationships and anticonvulsant activity. J. Pharm. Sci., 1994, 83, 1425-1432.
[54]
Kumar, K.; Sagar, S.; Esau, L.; Kaur, M.; Kumar, V. Synthesis of novel 1H-1, 2, 3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation. Eur. J. Med. Chem., 2012, 58, 153-159.
[55]
aGarden, S.J.; Torres, J.C.; da Silva, J.F.M.; Pinto, A.C. A convenient methodology for the N-alkylation of isatin compounds. Synth. Commun., 1998, 28, 1679-1689.
bBouhfid, R.; Joly, N.; Massoui, M.; Cecchelli, R.; Lequart, V.; Martin, P.; Essassi, E.M. An efficient synthesis of new spiro [indolo-3(1H), 2’ (3’H)- oxadiazolyl] and 1-(Triazol-4-ylmethyl) isatin Derivatives Heterocycles, 2005, 65, 2949-2955..
[56]
Raghu Raj. Pardeep, S. Synthesis of 1H-1, 2, 3-triazole linked b-lactameisatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur. J. Med. Chem., 2013, 63, 897-906.
[57]
Singh, P.; Sachdeva, S.; Raj, R.; Kumar, V.; Mahajan, M.P.; Nasser, S.; Vivas, L.; Gut, J.; Rosenthal, P.J.; Feng, T.S.; Chibale, K. Antiplasmodial and cytotoxicity evaluation of 3-functionalized 2-azetidinone derivatives. Bioorg. Med. Chem. Lett., 2011, 21, 4561-4563.
[58]
Singh, P.; Sharma, P.; Anand, A.; Bedi, P.M.; Kaur, T.; Saxena, A.K.; Kumar, V. Azide-alkyne cycloaddition en route to novel 1H-1, 2, 3-triazole tethered isatin conjugates with in vitro cytotoxic evaluation. Eur. J. Med. Chem., 2012, 55, 455-461.
[59]
Solomon, V.R.; Hu, C.; Lee, H. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: a hybrid pharmacophore approach. Bioorg. Med. Chem., 2010, 18, 1563-1572.
[60]
Taher, A.T.; Khalil, N.A.; Ahmed, E.M. Synthesis of novel isatin-thiazoline and isatinbenzimidazole conjugates as anti-breast cancer agents. Arch. Pharm. Res., 2011, 34, 1615-1621.
[61]
Ramla, M.M.; Omar, M.A.; El-Khamry, A.M.; El-Diwani, H.I. Synthesis and antitumor activity of 1-substituted-2-methyl-5-nitrobenzimidazoles. Bioorg. Med. Chem., 2006, 14, 7324-7332.
[62]
Rostom, S.A. Synthesis and in vitro antitumor evaluation of some indeno [1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem., 2006, 14, 6475-6485.
[63]
Havrylyuk, D.; Kovach, N.; Zimenkovsky, B.; Vasylenko, O.; Lesyk, R. Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates. Arch. Pharm. , 2011, 344, 514-522.
[64]
Palaska, E.; Aytemir, V.; Uzbay, I.T.; Erol, D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur. J. Med. Chem., 2001, 36, 539-543.
[65]
Kaplanciklia, Z.A.; Turan-Zitounia, G.; Ozdemira, A.; Can, O.V.; Chevallet, P. Synthesis and antinociceptive activities of some pyrazoline derivatives. Eur. J. Med. Chem., 2009, 44, 2606-2610.
[66]
Karpenko, A.S.; Dorovskykh, I.V.; Shibinskaya, M.O.; Maltsev, G.V.; Lyakhova, H.A.; Gusyeva, J.O. Synthesis, antiviral and interferon inducing activities of the carboxy-derivatives of the planar polycyclic compounds. Ukr. Bioorg. Acta, 2008, 6(2), 65-72.
[67]
Abdel-Aziz, H.A.; Eldehna, W.M.; Keeton, A.B.; Piazza, G.A.; Kadi, A.N.; Attawa, M.W. Isatin-benzoazine molecular hybrids as potential antiproliferative agents: Synthesis and in vitro pharmacological profiling. Drug Des. Devel. Ther., 2017, 11, 2333-2346.
[68]
Eldehna, W.M.; Almahli, H.; Al-Ansary, G.H.; Ghabbour, H.A.; Aly, M.H.; Ismael, O.E. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/ phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis inducing agents. J. Enzyme Inhib. Med. Chem., 2017, 32, 600-613.
[69]
aMiura, K.; Nakagawa, T.; Hosomi, A. Lewis base-promoted aldol reaction of dimethylsilyl enolates in aqueous dimethylformamide: use of calcium chloride as a lewis base catalyst. J. Am. Chem. Soc., 2002, 124(4), 536-537.
bMiura, K.; Tamaki, K.; Nakagawa, T.; Hosomi, A. A novel catalytic system for the mannich-type reaction of silyl enolates: stereoselective synthesis of β-aminoketones. Angew. Chem. Int. Ed., 2000, 39, 1958-1960.
cPasunooti, K.K.; Chai, H.; Jensen, C.N.; Gorityala, B.K.; Wang, S.; Liu, X.W. Microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Lett., 2011, 52, 80-84.
[70]
Akhaja, T.N.; Raval, J.P. Design, synthesis, in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents. Chin. Chem. Lett., 2012, 23, 446-449.
[71]
Akhaja, T.N.; Raval, J.P. Design, synthesis and in vitro evaluation of tetr ahydropyrimidine-isatin hybrids as potential antitubercular and antimalarial agents. Chin. Chem. Lett., 2012, 23, 785-788.
[72]
Akhaja, T.N.; Raval, J.P. 1, 3-Dihydro-2H-indol-2-ones derivatives: design, synthesis, in vitro antibacterial, antifungal and antitubercular study. Eur. J. Med. Chem., 2011, 46, 5573-5579.
[73]
Aboul-Fadl, T.; Mohammed, F.A.; Hassan, E.A. Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1-alkylisatin and isonicotinic acid hydrazide (INH). Arch. Pharm. Res., 2003, 26, 778-785.
[74]
Aboul-Fadl, T.; Bin-Jubair, F.A.; Aboul-Wafa, O. Schiff Bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur. J. Med. Chem., 2010, 45, 457-4586.
[75]
Hans, R.H.; Su, H.; Chibale, K. Novel tetracyclic structures from the synthesis of thiolactone-isatin hybrids. Beilstein J. Org. Chem., 2010, 6, 78.
[76]
Wang, C.L.J.; Salvino, J.M. Total synthesis of (±) thiolactomycin. Tetrahedron Lett., 1984, 25, 5243-5246.
[77]
Chu, W.; Rothfuss, J.; Chu, Y.; Zhou, D.; Mach, R.H. Synthesis and in vitro evaluation of sulfonamide isatin michael acceptors as small molecule inhibitors of caspase-6. J. Med. Chem., 2009, 52, 2188-2191.
[78]
Hans, R.H.; Wiid, I.J.; van Helden, P.D.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Novel thiolactone-isatin hybrids as potential antimalarial and antitubercular agents. Bioorg. Med. Chem. Lett., 2011, 21, 2055-2058.
[79]
Sharma, P.K.; Balwani, S.; Mathur, D.; Malhotra, S.; Singh, B.K.; Prasad, A.K.; Len, C.; Van der Eycken, E.V.; Ghosh, B.; Richards, N.G.; Parmar, V.S. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1520-1526.
[80]
Case, F.H. The Preparation of hydrazidines and as-triazines related to substituted 2-Cyanopyridines. J. Org. Chem., 1965, 30(3), 931-933.
[81]
Kumar, N.S.; Pradeep, T.; Jani, G.; Silpa, D.; Kumar, B.V. Design, synthesis, and antimicrobial screening of novel pyridyl-2-amidrazone incorporated isatin mannich bases. J. Adv. Pharm. Technol. Res., 2016, 3(1), 57-61.