[1]
Shen, W.W. A history of antipsychotic drug development. Compr. Psychiatry, 1999, 40, 407-414.
[2]
Meltzer, H.Y. What’s atypical about atypical antipsychotic drugs? Curr. Opin. Pharmacol., 2004, 4, 53-57.
[3]
Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: Their key role in drugs to treat schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2003, 27, 1159-1172.
[4]
Jafari, S.; Fernandez-Enright, F.; Huang, X-F. Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. J. Neurochem., 2012, 120, 371-384.
[5]
Roth, B.L.; Sfeffler, D.; Potkin, S.G. Atypical antipsychotic drug actions: unitary or multiple mechanisms for atypically? Clin. Neurosci. Res., 2003, 3, 108-117.
[6]
Agid, O.; Mamo, D.; Ginovart, N.; Vitcu, I.; Wilson, A.A.; Zipursky, R.B. Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response - a double-blind pet study in schizophrenia. Neuropsychopharmacology, 2007, 32, 1209-1215.
[7]
Grunder, G.; Hippius, H.; Carlsson, A. The “atypicality” of antipsychotics: a concept re-examined and re-defined. Nat. Rev. Drug Discov., 2009, 8, 197-202.
[8]
Üçok, A.; Gaebel, W. Side effects of atypical antipsychotics: a brief overview. World Psychiatry, 2008, 7, 58-62.
[9]
Schatzberg, A.F.; Nemeroff, C., Eds.; The American Psychiatric Publishing Textbook of Psychopharmacology, 4th ed; American Psychiatric Publishing Inc.: Washington, DC, 2009.
[10]
Kounavez, S.P. Chapter 37: Voltammetric Techniques. In: Handbook of Instrumental Techniques for Analytical Chemistry; Settle, F.A., Ed.; Prentice Hall PTR: New Jersey, 1997; pp. 709-725.
[11]
Brett, C.M.A.; Brett, A.M.O. Electrochemistry; Principles, Methods, and Applications; Oxford University Press: Oxford, 1993.
[12]
Ozkan, S.A. Principles and techniques of electroanalytical stripping methods for pharmaceutically active compounds in dosage forms and biological samples. Curr. Pharm. Anal., 2009, 5, 127-143.
[13]
Wang, J., Ed.; Analytical Electrochemistry, 3rd ed; Wiley-VCH Pub.: New Jersey, 2006.
[14]
Bard, A.J.; Faulkner, L.R., Eds.; Electrochemical Methods. Fundamentals and Applications, 2nd ed; John Wiley & Sons Inc.: New York, 2001.
[15]
Hart, J.P., Ed.; Electroanalysis of Biologically Important Compounds; Ellis Horwood Pub.: New York, 1990.
[16]
Zuman, P. Principles of applications of polarography and voltammetry in the analysis of drugs. FABAD J. Pharm. Sci., 2006, 31, 97-115.
[17]
Harvey, D., Ed.; Modern Analytical Chemistry; McGrawHill Company: New York, 2000.
[18]
Wang, J., Ed.; Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine; Wiley-VCH Pub.: New York, 1988.
[19]
Uslu, B.; Ozkan, S.A. Solid electrodes in electroanalytical chemistry: present applications and prospects for high throughput screening of drug compounds. Comb. Chem. High Throughput Screen., 2007, 10, 495-513.
[20]
Murray, R.W. Electroanalytical Chemistry; Bard, A.J., Ed.; Marcel Dekker Inc.: New York, 1983, Vol. 13, .
[21]
Murray, R.W. Chemically modified electrodes. Acc. Chem. Res., 1980, 13, 135-141.
[22]
Özkan, S.A.; Uslu, B.; Şentürk, Z. Electroanalytical characteristics of amisulpride and voltammetric determination of the drug in pharmaceuticals and biological media. Electroanalysis, 2004, 16, 231-237.
[23]
Aşangil, D.; Taşdemir, İ.H.; Kılıç, E. Adsorptive stripping voltammetric methods for determination of aripiprazole. J. Pharm. Anal., 2012, 2, 193-199.
[24]
Merli, D.; Dondi, D.; Ravelli, D.; Tacchini, D.; Profumo, A. Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. J. Electroanal. Chem., 2013, 711, 1-7.
[25]
Shrivastava, R.; Saxena, S.; Satsangee, S.P.; Jain, R. Graphene/TiO2/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics, 2015, 21, 2039-2049.
[26]
Farhadi, K.; Karimpour, A. Electrochemical behaviour and determination of clozapine on a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci., 2007, 23, 479-483.
[27]
Huang, F.; Qu, S.; Zhang, S.; Liu, B.; Kong, J. Sensitive detection of clozapine using a gold electrode modified with 16-mercaptohexadecanoic acid self-assembled monolayer. Talanta, 2007, 72, 457-462.
[28]
Mashhadizadeh, M.H.; Afshar, E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim. Acta, 2013, 87, 816-823.
[29]
Shahrokhian, S.; Kamalzadeh, Z.; Hamzehloei, A. Electrochemical determination of clozapine on MWCNTs/new coccine doped PPY modified GCE: An experimental design approach. Bioelectrochemistry, 2013, 90, 36-43.
[30]
Qu, S.; Pei, S.; Zhang, S.; Song, P. Preparation of silicate nanotubes and its application for electrochemical sensing of clozapine. Mater. Lett., 2013, 102-103, 56-58.
[31]
Tammari, E.; Nezhadali, A.; Lotfi, S.; Veisi, H. Fabrication of an electrochemical sensor based on magnetic nanocomposite Fe3O4/-alanine/Pd modified glassy carbon electrode for determination of nanomolar level of clozapine in biological model and pharmaceutical samples. Sens. Actuators B., 2017, 241, 879-886.
[32]
Merli, D.; Dondi, D.; Pesavento, M.; Profumo, A. Electrochemistry of olanzapine and risperidone at carbon nanotubes modified gold electrode through classical and DFT approaches. J. Electroanal. Chem., 2012, 683, 103-111.
[33]
Arvand, M.; Palizkar, B. Development of a modified electrode with amine-functionalized TiO2/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine. Mater. Sci. Eng. C, 2013, 33, 4876-4883.
[34]
Ahmed, H.M.; Mohamed, M.A.; Salem, W.M. New voltammetric analysis of olanzapine in tablets and human urine samples using a modified carbon paste sensor electrode incorporating gold nanoparticles and glutamine in a micellar medium. Anal. Methods, 2015, 7, 581-589.
[35]
Arvand, M.; Orangpour, S.; Ghodsi, N. Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. RSC Adv, 2015, 5, 46095-46103.
[36]
Ozkan, S.A.; Dogan, B.; Uslu, B. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Mikrochim. Acta, 2006, 153, 27-35.
[37]
Nigovic, B.; Spajic, J. A novel electrochemical sensor for assaying of antipsychotic drug quetiapine. Talanta, 2011, 86, 393-399.
[38]
Nigovic, B.; Mornar, A.; Sertic, M. Graphene nanocomposite modified glassy carbon electrode for voltammetric determination of the antipsychotic quetiapine. Mikrochim. Acta, 2016, 183, 1459-1467.
[39]
Afkhami, A.; Ghaedi, H. Multiwalled carbon nanotube paste electrode as an easy, inexpensive and highly selective sensor for voltammetric determination of risperidone. Anal. Methods, 2012, 4, 1415-1420.
[40]
Arvand, M.; Pourhabib, A. Adsorptive stripping differential pulse voltammetric determination of risperidone with a multi-walled carbon nanotube-ionic liquid paste modified glassy carbon electrode. J. Chin. Chem. Soc., 2013, 60, 63-72.
[41]
Altun, Y.; Dogan-Topal, B.; Uslu, B.; Ozkan, S.A. Anodic behavior of sertindole and its voltammetric determination in pharmaceuticals and human serum using glassy carbon and boron-doped diamond electrodes. Electrochim. Acta, 2009, 54, 1893-1903.
[42]
Kul, D.; Gumustas, M.; Uslu, B.; Ozkan, S.A. Electroanalytical characteristics of antipsychotic drug ziprasidone and its determination in pharmaceuticals and serum samples on solid electrodes. Talanta, 2010, 82, 286-295.