[1]
Caraceni, A.; Gorni, G.; Zecca, E.; De Conno, F. More on the use of nonsteroidal anti-inflammatories in the management of cancer pain. J. Pain Symptom Manage., 2001, 21, 89-91.
[2]
Ferreira, M.L.; Herbert, R.D.; Ferreira, P.H.; Latimer, J.; Ostelo, R.W.; Grotle, M.; Barrett, B. The smallest worthwhile effect of nonsteroidal anti-inflammatory drugs and physiotherapy for chronic low back pain: A benefit–harm trade-off study. J. Clin. Epidemiol., 2013, 66, 1397-1404.
[3]
Gnjidic, D.; Blyth, F.M.; Le Couteur, D.G.; Cumming, R.G.; McLachlan, A.J.; Handelsman, D.J.; Seibel, M.; Waite, L.; Naganathan, V. Nonsteroidal anti-inflammatory drugs (NSAIDs) in older people: Prescribing patterns according to pain prevalence and adherence to clinical guidelines. Pain, 2013, 155, 1814-1820.
[4]
Hassa, H.; Oge, T.; Aydin, Y.; Burkankulu, D. Comparison of nonsteroidal anti-inflammatory drugs and misoprostol for pain relief during and after hysterosalpingography: Prospective, randomized, controlled trial. J. Minim. Invasive Gynecol., 2014, 21, 762-766.
[5]
Cudaback, E.; Jorstad, N.L.; Yang, Y.; Montine, T.J.; Keene, C.D. Therapeutic implications of the prostaglandin pathway in Alzheimer’s disease. Biochem. Pharmacol., 2014, 88, 565-572.
[6]
Xiong, S.L.; Liu, X.; Yi, G.H. High-density lipoprotein induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through sphingosine kinase-2. Mol. Cell. Biochem., 2014, 389, 197-207.
[7]
de Moraes, C.N.; Maia, L.; de Lima, P.F.; Dias, M.C.; Raposo-Ferreira, T.M.M.; Sudano, M.J.; Junior, J.B.; Oba, E. Temporal analysis of prostaglandin F2α receptor, caspase 3, and cyclooxygenase 2 messenger RNA expression and prostaglandin F2α receptor and cyclooxygenase 2 protein expression in endometrial tissue from multiparous Nelore (Bos taurus indicus) cows treated with cloprostenol sodium during puerperium. Theriogenology, 2015, 83, 276-284.
[8]
Grim, T.W.; Ghosh, S.; Hsu, K-L.; Cravatt, B.F.; Kinsey, S.G.; Lichtman, A.H. Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models. Pharmacol. Biochem. Behav., 2014, 124, 405-411.
[9]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.H.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[10]
Arellano, F.M.; Yood, M.U.; Wentworth, C.E.; Oliveria, S.A.; Rivero, E.; Verma, A.; Rothman, K.J. Use of cyclo-oxygenase 2 inhibitors (COX-2) and prescription non-steroidal anti-inflammatory drugs (NSAIDS) in UK and USA populations. Implications for COX-2 cardiovascular profile. Pharmacoepidemiol. Drug Saf., 2006, 15, 861-872.
[11]
Boursinos, L.A.; Karachalios, T.; Poultsides, L.; Malizos, K.N. Do steroids, conventional non-steroidal anti-inflammatory drugs and selective Cox-2 inhibitors adversely affect fracture healing? J. Musculoskelet. Neuronal Interact., 2009, 9, 44-52.
[12]
Tanaka, K.I.; Suemasu, S.; Ishihara, T.; Tasaka, Y.; Arai, Y.; Mizushima, T. Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis. Eur. J. Pharmacol., 2009, 603, 120-132.
[13]
Grover, J.; Kumar, V.; Singh, V.; Bairwa, K.; Sobhia, M.E.; Jachak, S.M. Synthesis, biological evaluation, molecular docking and theoretical evaluation of ADMET properties of nepodin and chrysophanol derivatives as potential cyclooxygenase (COX-1, COX-2) inhibitors. Eur. J. Med. Chem., 2014, 80, 47-56.
[14]
Kim, K.J.; Choi, M.J.; Shin, J.S.; Kim, M.; Choi, H.E.; Kang, S.M.; Jin, J.H.; Lee, K.T.; Lee, J.Y. Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2014, 24, 1958-1962.
[15]
Yusup, G.; Akutsu, Y.; Mutallip, M.; Qin, W.; Hu, X.; Komatsu-Akimoto, A.; Hoshino, I.; Hanari, N.; Mori, M.; Akanuma, N.; Isozaki, Y.; Matsubara, H.A. COX-2 inhibitor enhances the antitumor effects of chemotherapy and radiotherapy for esophageal squamous cell carcinoma. Int. J. Oncol., 2014, 44, 1146-1152.
[16]
Davood, A.; Alipour, E.; Shafiee, A. Efficient synthesis of imidazole derivatives: An important synthon for the preparation of biologically active compounds. Turk. J. Chem., 2008, 32, 389-395.
[17]
Iman, M.; Davood, A.; Nematollahi, A.R.; Dehpoor, A.R.; Shafiee, A. Design and synthesis of new 1,4-dihydropyridines containing 4(5)-chloro-5(4)-imidazolyl substituent as a novel calcium channel blocker. Arch. Pharm. Res., 2011, 34, 1417-1426.
[18]
Sarkandi, D.N.; Firoozpour, L.; Asadipour, A.; Sheibani, V.; Asli, M.A.M.; Davood, A.; Shafiee, A.; Foroumadi, A. Synthesis of 1-Benzyl-4-[2-(5-phenyl-1,3,4-thiadiazole-2-yl)aminoethyl] piperidine as potential alzheimer’s disease modifying agent. Asian J. Chem., 2011, 23, 2503-2505.
[19]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; Eltahir, K.E.H.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[20]
Avila, C.M.; Romeiro, N.C.; Sperandio da Silva, G.M.; Sant’Anna, C.M.R.; Barreiro, E.J.; Fraga, C.A.M. Development of new CoMFA and CoMSIA 3D-QSAR models for anti-inflammatory phthalimide-containing TNFα modulators. Bioorg. Med. Chem., 2006, 14, 6874-6885.
[21]
Zav’yalov, S.I.; Zavozin, A.G.; Kulikova, L.B.; Ezhova, G.I.; Kravchenko, N.E. Synthesis of N-aryl derivatives of succinimide and phthalimide. Pharm. Chem. J., 1997, 31, 43-44.
[22]
Lima, L.M.; Castro, P.; Machado, A.L.; Fraga, C.A.M.; Lugnier, C.; de Moraes, V.L.G.; Barreiro, E.J. Synthesis and anti-inflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg. Med. Chem., 2002, 10, 3067-3073.
[23]
Meyer-Kirchrath, J.; Schrör, K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr. Med. Chem., 2000, 7, 1121-1129.
[24]
Lazzaroni, M.; Bianchi Porro, G. Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. Aliment. Pharmacol. Ther., 2004, 20, 48-58.
[25]
Maund, E.; McDaid, C.; Rice, S.; Wright, K.; Jenkins, B.; Woolacott, N. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs for the reduction in morphine-related side-effects after major surgery: A systematic review. Br. J. Anaesth., 2001, 106, 292-297.
[26]
Iman, M.; Shafaroodi, H.; Davood, A.; Abedini, M.; Pishva, P.; Taherkhani, M.; Dehpour, A.R.; Shafiee, A. Design and synthesis of 2-(arylmethylideneamino) isoindolines as new potential analgesic and anti-inflammatory agents: A molecular hybridization approach. Curr. Pharm. Des., 2016, 22, 5760-5766.
[27]
Onwukaeme, N.D. Anti-inflammatory activities of flavonoids of Baphia nitida Lodd. (Leguminosae) on mice and rats. J. Ethnopharmacol., 1995, 46, 121-124.
[28]
Büyükokuroğlu, M.E. Anti-inflammatory and antinociceptive properties of dantrolene sodium in rats and mice. Pharmacol. Res., 2002, 45, 455-460.
[29]
Badilla, B.; Arias, A.Y.; Arias, M.; Mora, G.A.; Poveda, L.J. Anti-inflammatory and antinociceptive activities of Loasa speciosa in rats and mice. Fitoterapia, 2003, 74, 45-51.
[30]
Mujumdar, A.M.; Misar, A.V. Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J. Ethnopharmacol., 2004, 90, 11-15.
[31]
Kale, M.; Misar, A.V.; Dave, V.; Joshi, M.; Mujumdar, A.M. Anti-inflammatory activity of Dalbergia lanceolaria bark ethanol extract in mice and rats. J. Ethnopharmacol., 2007, 112, 300-304.
[32]
Rezaei-S, M.; Dashti-R, M.H.; Emami, T. Anti-nociceptive effect of propranolol on neuropathic and inflammatory pain in rats. Neurosci. Res., 2009, 65(Suppl. 1), S258.