[2]
Wahid, B.; Ali, A.; Rafique, S.; Idrees, M. Global expansion of chikungunya virus: mapping the 64-year history. Int. J. Infect. Dis., 2017, 58, 69-76.
[3]
Rashad, A.A.; Keller, P.A. Structure based design towards the identification of novel binding sites and inhibitors for the Chikungunya virus envelope proteins. J. Mol. Graph. Model., 2013, 44, 241-252.
[4]
Jadav, S.S.; Korupolu, P.; Sinha, B.N.; Jayaprakash, V. Chikungunya epidemiological survey and Current available inhibitors. J. Pharmaceut. Chem., 2014, 1(3), 59-67.
[5]
Puig-Basagoiti, F.; Tilgner, M.; Forshey, B.M.; Philpott, S.M.; Espina, N.G.; Wentworth, D.E.; Goebel, S.J.; Masters, P.S.; Falgout, B.; Ren, P.; Ferguson, D.M. Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob. Agents Chemother., 2006, 50(4), 1320-1329.
[6]
Solomon, T. Flavivirus encephalitis and other neurological syndromes (Japanese encephalitis, WNV, Tick borne encephalits, Dengue, Zika virus). Int. J. Infect. Dis., 2016, 45, 24.
[7]
Daep, C.A.; Muñoz-Jordán, J.L.; Eugenin, E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol., 20(6), 539-560.
[8]
Li, Z.; Khaliq, M.; Zhou, Z.; Post, C.B.; Kuhn, R.J.; Cushman, M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem., 2008, 51(15), 4660-4671.
[9]
Bai, F.; Town, T.; Pradhan, D.; Cox, J.; Ledizet, M.; Anderson, J.F.; Flavell, R.A.; Krueger, J.K.; Koski, R.A.; Fikrig, E. Antiviral peptides targeting the west nile virus envelope protein. J. Virol., 2007, 81(4), 2047-2055.
[10]
Costantino, L.; Barlocco, D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem., 2006, 13(1), 65-85.
[11]
Cândido-Bacani, P.M.; dos Reis, M.B.; Serpeloni, J.M.; Calvo, T.R.; Vilegas, W.; Varanda, E.A.; Cólus, I.M. Mutagenicity and genotoxicity of isatin in mammalian cells in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2011, 719(1-2), 47-51.
[12]
Ren, A.; Wang, Q.; Fang, Z.; Gao, M.; Wang, H.; Zhang, J.; Xu, W.; Yue, W.; Yin, L.; Liu, Z.; Li, X.; Ding, B. Pharmacokinetic study of isatin in dog plasma by liquid chromatography tandem mass spectrometry. Panminerva Med., 2015, 57(4), 177-182.
[13]
Ren, A.; Su, B.; Ye, S.; Wei, X.; Fang, Z.; Wang, Q.; Zhang, J.; Xu, W.; Yue, W.; Yin, L.; Liu, Z.; Li, X.; Ding, B. A pharmacokinetic study of Isatin in Beagles’ bodies. Exp. Ther. Med., 2016, 11(6), 2225-2228.
[14]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A
comprehensive review from 2000-2008. Anti-Cancer Agents Med.
Chem. (Formerly Curr. Med. Chem.-Anti-Cancer Agents),, 2009, 9(4), 397-414.
[15]
Cihan-Üstündağ, G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2016, 24(2), 240-246.
[16]
Laursen, S.R.; Jensen, M.T.; Lindhardt, A.T.; Jacobsen, M.F.; Skrydstrup, T. A Palladium-Catalyzed Double Carbonylation Approach to Isatins from 2-Iodoanilines. Eur. J. Org. Chem., 2016, 1881-1885.
[17]
Bauer, D.J. Clinical experience with the antiviral drug Marboran® (1-methylisatin 3-thiosemicarbazone). Ann. N. Y. Acad. Sci., 1965, 130(1), 110-117.
[18]
Ronen, D.; Nir, E.; Teitz, Y. Effect of N-methylisatin-β-4′: 4′-diethylthiosemicarbazone on intracellular Moloney leukemia virus constituents. Antiviral Res., 1985, 5(4), 249-254.
[19]
Teitz, Y.A.; Ronen, D.; Vansover, A.; Stematsky, T.; Riggs, J.L. Inhibition of human immunodeficiency virus by N-methylisatin-β4′: 4′-diethylthiosemicarbazone and N-allylisatin-β-4′: 4′-diallythiosemicarbazone. Antiviral Res., 1994, 24(4), 305-314.
[20]
Kang, I.J.; Wang, L.W.; Hsu, T.A.; Yueh, A.; Lee, C.C.; Lee, Y.C.; Lee, C.Y.; Chao, Y.S.; Shih, S.R.; Chern, J.H. Isatin-β-thiosemicarbazones as potent herpes simplex virus inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(7), 1948-1952.
[21]
Zhang, H.M.; Dai, H.; Hanson, P.J.; Li, H.; Guo, H.; Ye, X.; Hemida, M.G.; Wang, L.; Tong, Y.; Qiu, Y.; Liu, S. Antiviral activity of an isatin derivative via induction of PERK-Nrf2-mediated suppression of cap-independent translation. ACS Chem. Biol., 2014, 9(4), 1015-1024.
[22]
Bauer, D.J.; Apostolov, K. Adenovirus multiplication: Inhibition by methisazone. Science, 1966, 154(3750), 796-797.
[23]
Bauer, D.J.; Apostolov, K.; Selway, J.W. Activity of Methisazone against Viruses. Ann. N. Y. Acad. Sci., 1970, 173(1), 314-319.
[24]
Teitz, Y.; Ronen, D.; Vasover, A.; Stematsky, T.; Riggs, J.L. Inhibition of human immunodeficiency virus by N-methylisatin-β4′:4′-diethylthiosemicarbazone and N-allylisatin-β-4′:4′-diallythiosemi-carbazone. Antiviral Res., 1994, 305, 314.
[25]
Mishra, P.; Kumar, A.; Mamidi, P.; Kumar, S.; Basantray, I.; Saswat, T.; Das, I.; Nayak, T.K.; Chattopadhyay, S.; Subudhi, B.B.; Chattopadhyay, S. Inhibition of chikungunya virus replication by 1-
[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene]
amino] thiourea (mbzm-n-ibt). Scientif. Reports, 2016, 6
[26]
Rodrigues Faria, N.; Lourenço, J.; Marques de Cerqueira, E.; Maia de Lima, M.; Pybus, O.; Carlos Junior Alcantara, L. Epidemiology
of chikungunya virus in bahia, Brazil, 2014-2015. PLOS Curr.
Outbreaks,, 2016, Ed(1).
[27]
Sebastian, L.; Desai, A.; Shampur, M.N.; Perumal, Y.; Sriram, D.; Vasanthapuram, R. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol. J., 2008, 5(1), 64.
[28]
Sebastian, L.; Desai, A.; Yogeeswari, P.; Sriram, D.; Madhusudana, S.N.; Ravi, V. Combination of N-methylisatin-β-thiosemicarbazone derivative (SCH16) with ribavirin and mycophenolic acid potentiates the antiviral activity of SCH16 against Japanese encephalitis virus in vitro. Lett. Appl. Microbiol., 2012, 55(3), 234-239.
[29]
Minami, M.; Hamaue, N.; Hirafuji, M.; Saito, H.; Hiroshige, T.; Ogata, A.; Tashiro, K.; Parvez, S.H. Isatin, an endogenous MAO inhibitor, and a rat model of Parkinson’s disease induced by the Japanese encephalitis virus.In Oxidative Stress and Neuroprotection; 2006 (pp. 87-95). Springer Vienna.
[30]
Blázquez, A.B.; Martín-Acebes, M.A.; Saiz, J.C. Inhibition of west nile virus multiplication in cell culture by Anti-Parkinsonian drugs. Front. Microbiol., 2016, 7.
[31]
Gilbert, C.; Bergeron, M.; Méthot, S.; Giguère, J.F.; Tremblay, M.J. Statins could be used to control replication of some viruses, including HIV-1. Viral Immunol., 2005, 18(3), 474-489.
[32]
Asenjo, A.; González-Armas, J.C.; Villanueva, N. Phosphorylation of human respiratory syncytial virus P protein at serine 54 regulates viral uncoating. Virology, 2008, 380(1), 26-33.
[33]
Vázquez-Calvo, Á.; Saiz, J.C.; Sobrino, F.; Martín-Acebes, M.A. Inhibition of enveloped virus infection of cultured cells by valproic acid. J. Virol., 2011, 85(3), 1267-1274.
[34]
Gastaminza, P.; Whitten-Bauer, C.; Chisari, F.V. Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc. Natl. Acad. Sci., 2010, 107(1), 291-296.
[35]
Zou, B.; Chan, W.L.; Ding, M.; Leong, S.Y.; Nilar, S.; Seah, P.G.; Liu, W.; Karuna, R.; Blasco, F.; Yip, A.; Chao, A. Lead optimization of spiropyrazolopyridones: a new and potent class of dengue virus inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 344-348.
[36]
Padmanabhan, P.; Khaleefathullah, S.; Kaveri, K.; Palani, G.; Ramanathan, G.; Thennarasu, S.; Tirichurapalli Sivagnanam, U. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. J. Med. Virol., 2017, 89(3), 546-552.
[37]
Zhang, X.G.; Mason, P.W.; Dubovi, E.J.; Xu, X.; Bourne, N.; Renshaw, R.W.; Block, T.M.; Birk, A.V. Antiviral activity of geneticin against dengue virus. Antiviral Res., 2009, 83(1), 21-27.
[38]
Wu, R.; Smidansky, E.D.; Oh, H.S.; Takhampunya, R.; Padmanabhan, R.; Cameron, C.E.; Peterson, B.R. Synthesis of a 6-methyl-7-deaza analogue of adenosine that potently inhibits replication of polio and dengue viruses. J. Med. Chem., 2010, 53(22), 7958-7966.
[39]
Muller, V.D.; Soares, R.O.; dos Santos-Junior, N.N.; Trabuco, A.C.; Cintra, A.C.; Figueiredo, L.T.; Caliri, A.; Sampaio, S.V.; Aquino, V.H. Phospholipase A 2 Isolated from the Venom of crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS One, 2014, 9(11), e112351.