[1]
Afkhami, A.; Bahiraei, A.; Madrakian, T. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater. Sci. Eng. C, 2016, 59, 168-176.
[2]
Goyal, R.N.; Chatterjee, S.; Agrawal, B. Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sens. Actuators B ., 2010, 145(2), 743-748.
[3]
Kormosh, Z.; Hunka, I.; Bazel, Y. Potentiometric determination of diclofenac in pharmaceutical formulation by membrane electrode based on ion associate with base dye. Chin. Chem. Lett., 2007, 18, 1103-1106.
[4]
Sanati, A.L.; Karimi-Maleh, H.; Badiei, A.R.; Biparva, P.; Ensafi, A.A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C, 2014, 35, 379-385.
[5]
Goyal, R.N.; Chatterjee, S.; Rana, A.R.S. The effect of modifying an edge-plane pyrolytic graphite electrode with single-wall carbon nanotubes on its use for sensing diclofenac. Carbon, 2010, 48, 4136-4144.
[6]
Sondergaard, K.B.; Weeke, P.; Wissenberg, M.; Schjerning Olsen, A.M.; Fosbol, E.L.; Lipper, F.K.; Torp-Pedersen, C.; Gislason, G.H. Folke Fredrik. Non-steroidal anti-inflamatory drug use is associated with increased risk of out-of-hospital cardiac arrest: a nationwide case-time-control study. Eur. Heart J. Cardiovasc. Pharmacother., 2017, 3(2), 100-107.
[7]
Mokhtari, A.; Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H. Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sens. Actuators B., 2012, 169, 96-105.
[8]
Yilmaz, B.; Ciltas, U. Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods. J. Pharm. Anal., 2015, 5(3), 153-160.
[9]
Tubino, M.; Souza, R.L. Gravimetric method for the determination of diclofenac in pharmaceutical preparations. J. AOAC Int., 2005, 88(6), 1684-1687.
[10]
Shamsipur, M.; Jalali, F.; Ershad, S. Preparation of a diclofenac potentiometric sensor and its application to pharmaceutical analysis and to drug recovery from biological fluids. J. Pharm. Biomed, 2005, 37(5), 943-947.
[11]
Santini, A.O.; Pezza, H.R.; Pezza, L. Determination of diclofenac in pharmaceutical preparations using a potentiometric sensor immobilized in a graphite matrix. Talanta, 2006, 68(3), 636-642.
[12]
Hassan, S.S.M.; Mahmoud, W.H.; Elmosallany, M.A.F. Iron (II)-phthalocyanine as a novel recognition sensor for selective potentiometric determination of diclofenac and warfarin drugs. J. Pharm. Biomed., 2005, 39, 315-321.
[13]
Jin, W.; Zhang, J. Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection. J. Chromatogr. A, 2000, 868(1), 101-107.
[14]
Yilmaz, B.; Asci, A.; Palabiyik, S.S. HPLC method for determination of diclofenac in human plasma and its application to a pharmacokinetic study in Tukey. J. Chromatogr. Sci., 2011, 49, 422-427.
[15]
Arcelloni, C.; Lanzi, R.; Pedercini, S. High-performance liquid chromatographic determination of diclofenac in human plasma after solid-phase extraction. J. Chromatogr. B., 2001, 763, 195-200.
[16]
Meng, Q.C.; Cepeda, M.S.; Kramer, T.; Zou, H.; Matoka, D.J.; Farrar, J. High performance liquid chromatographic determination of morphine and its 3- and 6-glucuronide metabolites by two-step solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl., 2000, 742, 115-123.
[17]
Elkady, E.F. Simultaneous determination of diclofenac potassium and methocarbamol in ternary mixture with guaifenesin by reversed phase liquid chromatography. Talanta, 2010, 82(4), 1604-1607.
[18]
Bhupendra, L.K.; Kaphalia, S.; Kumar, S.; Kanz, M.F.; Treinen-Moslen, M. Efficient high performance liquid chromatograph/ultraviolet method for determination of diclofenac and 4′-hydroxydiclofenac in rat serum. J. Chromatogr. B., 2005, 830(2), 231-237.
[19]
Lee, H.S.; Jeong, C.K.; Choi, S.J.; Kim, S.B.; Lee, M.H.; Ko, G.; Sohn, D.H. Simultaneous determination of aceclofenac and diclofenac in human plasma by narrow bore HPLC using column-switching. J. Pharm. Biomed. Anal., 2000, 23(5), 775-781.
[20]
Roskar, R.; Kmetec, V. Liquid chromatographic determination of diclofenac in human sinovial fluid. J. Chromatogr. B ., 2003, 788(1), 57-64.
[21]
Birajdar, A.S.; Meyyanathan, S.; Suresh, B. A RP-HPLC method for determination of diclofenac with rabeprazole in solid dosage form. Pharm Sci. Monit, 2011, 2(2), 171-178.
[22]
Chmielewska, A.; Konieczna, L.; Plenis, A.; Bieniecki, M.; Lamparczyk, H. Determination of diclofenac in plasma by high-performance liquid chromatography with electrochemical detection. Biomed. Chromatogr., 2006, 20(1), 119-124.
[23]
Mukherjee, B.; Mahapatra, S.; Das, S.; Roy, G.; Dey, S. HPLC detection of plasma concentrations of diclofenac in human volunteers administered with povidone-ethylcellulose-based experimental transdermal matrix-type patches. Methods Find. Exp. Clin. Pharmacol., 2006, 28(5), 301-306.
[24]
Abdel-Hamid, M.E.; Novotny, L.; Hamza, H.J. Determination of diclofenac sodium, flefenamic acid, indomethacin and ketoprofen by LC-APCI-MS. J. Pharm. Biomed. Anal., 2001, 24(4), 587-594.
[25]
Quintana, J.B.; Carpinteira, J.; Rodrigues, I. Chapter 2.5 Analysis of acidic drugs by gas chromatography. Comprehensive. Anal. Chem., 2007, 50, 185-218.
[26]
Yilmaz, B. GC-MS determination of diclofenac in human plasma. Chromatographia, 2010, 71(5-6), 549-551.
[27]
Thongchai, W.; Liawruangrath, B.; Thongpoon, C.; Machan, T. High performance thin layer chromatographic method for the determination of diclofenac sodium in pharmaceutical formulations. Chiang Mai. J. Sci., 2006, 33(1), 123-128.
[28]
Bhushan, R.; Gupta, D.; Mukherjee, A. Liquid chromatographic analysis of certain commercial formulations for non-opioid analgesics. Biomed. Chromatogr., 2007, 21(12), 1284-1290.
[29]
Sparidans, R.W.; Lagas, J.S.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for diclofenac and three primary metabolites in mouse plasma. J. Chromatogr. B., 2008, 872(1-2), 77-82.
[30]
De Souza, R.L.; Tubino, M. Spectrophotometric determination of diclofenac in pharmaceutical preparations. J. Braz. Chem. Soc., 2005, 16(5), 1068-1073.
[31]
Didamony, A.M.; Amin, A.S. Adaptation of a color reaction for spectrophotometric determination of diclofenac sodium and piroxicam in pure form and in pharmaceutical formulations. Anal. Lett., 2004, 37(6), 1151-1162.
[32]
Matin, A.A.; Farajzadeh, M.A.; Joyuban, A. A simple spectrophotometric method for determination of sodium diclofenac in pharmaceutical formulations. II Farmaco, 2005, 60(10), 855-858.
[33]
Gabhane, K.B.; Kasture, A.V.; Shrikhande, V.N.; Barde, L.N.; Wankhade, V.P. Simultaneous spectrophotometric determination of metaxalone and diclofenac potassium in combined tablet dosage form. Int. J. Chem. Sci, 2009, 7(1), 539-545.
[34]
Arancibia, J.A.; Boldrini, M.A.; Escandar, G.M. Spectrofluorimetric determination of diclofenac in the presence of α-cyclodextrin. Talanta, 2000, 52(2), 261-268.
[35]
Marcela, C.; Liliana, B. Indirect fluorometric determination of diclofenac sodium. Anal. Sci., 2006, 22, 431-433.
[36]
Sarhangzadeh, K.; Khatami, A.A.; Jabbari, M.; Bahari, S. Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J. Appl. Electrochem., 2013, 43(12), 1217-1224.
[37]
Arvand, M.; Gholizadeh, T.M.; Zanjanchi, M.A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater. Sci. Eng. C, 2012, 32, 1682-1689.
[38]
Yang, X.; Wang, F.; Hu, S. Enhanced oxidation of diclofenac sodium at a nanostructured electrochemical sensing film constructed by multi-wall carbon nanotubes-surfactant composite. Mater. Sci. Eng. C, 2008, 28(1), 188-194.
[39]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Gupta, V.K.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 194, 114-119.
[40]
Manea, F.; Ihos, M.; Remes, A.; Burtica, G.; Schoonman, J. Electrochemical determination of diclofenac sodium in aqueous solution on Cu-doped zeolite-expanded graphite-epoxy electrode. Electroanalysis, 2010, 22(17-18), 2058-2063.
[41]
Chethana, B.K.; Basavanna, S.; Arthoba Naik, Y. Voltammetric determination of diclofenac sodium using tyrosine-modified carbon paste electrode. Ind. Eng. Chem. Res., 2012, 51(31), 10287-10295.
[42]
Fernandez-Llano, L.; Blanco-Lopez, M.C.; Lobo-Castano, M.J.; Miranda-Ordieres, A.J.; Tunon-Blanco, P. Determination of diclofenac in urine samples by molecularly imprinted solid-phase extraction and adsorptive differential pulse voltammetry. Electroanalysis, 2007, 19(15), 1555-1561.
[43]
Bayandori Moghaddam, A.; Mohammadi, A.; Fathabadi, M. Application of carbon nanotube-graphite mixture for the determination of diclofenac sodium in pharmaceutical and biological samples. Pharmaceut. Anal. Acta, 2012, 5(3), 1000161-1000166.
[44]
Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A.A.; Haghgoo, S. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode. Electrochim. Acta, 2007, 53(4), 1766-1774.
[45]
Karuppiah, C.; Cheemalapati, S.; Chen, S.M.; Palanisamy, S. Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics, 2015, 21(1), 231-238.
[46]
Diclofenaco. Farmacopea de los Estados Unidos Mexicanos, Décima edición 2011, 1162.
[47]
Švancara, I.; Schachl, K. Testing of unmodified carbon paste electrodes. Chem. Listy, 1999, 93, 490-499.
[48]
Fakhari, A.R.; Rafiee, B.; Ahmar, H.; Bagheri, A. Electrocatalytic determination of oxalic acid by TiO2 nanoparticles/multiwalled carbon nanotubes modified electrode. Anal. Methods, 2012, 4, 3314-3319.
[49]
Cuéllar, M.; Pfaffen, V.; Ortiz, P.I. Application of multi-factorial experimental design to successfully model and optimize inorganic chromium speciation by square wave voltammetry. J. Electroanal. Chem., 2016, 765, 37-44.
[50]
Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl. Chem., 2002, 74(5), 835-855.
[51]
Cid-Cerón, M.M.; Guzmán-Hernández, D.S.; Ramírez-Silva, M.T.; Galano, A.; Romero-Romo, M.; Palomar-Pardavé, M. New insights on the kinetics and mechanism of the electrochemical oxidation of diclofenac in neutral aqueous medium. Electrochim. Acta, 2016, 199, 92-98.
[52]
Aguilar-Lira, G.Y.; Álvarez-Romero, G.A.; Zamora-Suárez, A.; Palomar-Pardavé, M.; Rojas-Hernández, A.; Rodríguez-Ávila, J.A.; Páez-Hernández, M.E. New insights on diclofenac electrochemistry using graphite as working electrode. J. Electroanal. Chem., 2017, 794, 182-188.
[53]
Barbier, B. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. J. Electrochem. Soc., 1990, 137(6), 1757-1764.
[54]
Deinhammer, R.S.; Ho, M.; Anderegg, J.W. Porter, M.D. Electrochemical Oxidation of Amine-Containing Compounds: A Route to the Surface Modification of Glassy Carbon Electrodes. Langmuir, 1994, 10(4), 1306-1313.
[55]
Ensafi, A.A.; Izadi, M.; Karimi-Maleh, H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics, 2013, 19(1), 137-144.
[56]
Parvizi Fard, G.; Alipour, E.; Ali Sabzi, R.E. Modification of a disposable pencil graphite electrode with multiwalled carbon nanotubes: application to electrochemical determination of diclofenac sodium in some pharmaceutical and biological samples. Anal. Methods, 2016, 8, 3966-3974.
[57]
Arvand, M.; Hassannezhad, M. Square wave voltammetric determination of uric acid and diclofenac on multi-walled carbon nanotubes decorated with magnetic core-shell Fe3O4@SiO2 nanoparticles as an enhanced sensing interface. Ionics, 2015, 21, 3245-3256.
[58]
Guzmán-Hernández, D.S.; Martínez-Cruz, M.A.; Ramírez-Silva, M.T.; Romero-Romo, M.; Corona-Avendaño, S.; Mendoza-Huizar, L.H.; Palomar-Pardavé, M. Simultaneous electrochemical quantification of naproxen, acetaminophen and diclofenac using a bare carbon paste electrode. Anal. Methods, 2016, 8, 7868-7872.
[59]
Guzmán-Hernández, D.S.; Cid-Cerón, M.M.; Romero-Romo, M.; Ramírez-Silva, M.T.; Páez-Hernández, M.E.; Corona-Avendaño, S.; Palomar-Pardavé, M. Taking advantage of CTAB micelles for the simultaneous electrochemical quantification of diclofenac and acetaminophen in aqueous media. RSC Advances, 2017, 7, 40401-40410.