Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Novel Piperazine Amides of Cinnamic Acid Derivatives as Tyrosinase Inhibitors

Author(s): Zehra Tuğçe Gür, Fatma Sezer Şenol, Suhaib Shekfeh, İlkay Erdoğan Orhan, Erden Banoğlu and Burcu Çalişkan*

Volume 16, Issue 1, 2019

Page: [36 - 44] Pages: 9

DOI: 10.2174/1570180815666180420105652

Price: $65

Abstract

Background: A series of novel cinnamic acid piperazine amide derivatives has been designed and synthesized, and their biological activities were also evaluated as potential tyrosinase inhibitors.

Methods: Compounds 9, 11 and 17 showed the most potent biological activity (IC50 = 66.5, 61.1 and 66 µM, respectively). In silico docking simulation was performed to position compound 11 into the Agaricus bisporus mushroom tyrosinase’s active site to determine the putative binding interactions.

Results and Conclusion: The results indicated that compound 11 could serve as a promising lead compound for further development of potent tyrosinase inhibitors.

Keywords: Ferulic acid, cinnamic acid, piperazine, tyrosinase, docking, huntington's diseases.

Graphical Abstract

[1]
Amano, R.; Yamashita, A.; Kasai, H.; Hori, T.; Miyasato, S.; Saito, S.; Yokoe, H.; Takahashi, K.; Tanaka, T.; Otoguro, T.; Maekawa, S.; Enomoto, N.; Tsubuki, M.; Moriishi, K. Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Res., 2017, 145, 123-130.
[2]
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem., 2011, 18, 1672-1703.
[3]
De Simone, A.; Bartolini, M.; Baschieri, A.; Apperley, K.Y.P.; Chen, H.H.; Guardigni, M.; Montanari, S.; Kobrlova, T.; Soukup, O.; Valgimigli, L.; Andrisano, V.; Keillor, J.W.; Basso, M.; Milelli, A. Hydroxy-substituted trans-cinnamoyl derivatives as multifunctional tools in the context of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 378-389.
[4]
Ergun, B.C.; Coban, T.; Onurdag, F.K.; Banoglu, E. Synthesis, antioxidant and antimicrobial evaluation of simple aromatic esters of ferulic acid. Arch. Pharm. Res., 2011, 34, 1251-1261.
[5]
Saeed, A.; Mahesar, P.A.; Zaib, S.; Khan, M.S.; Matin, A.; Shahid, M.; Iqbal, J. Synthesis, cytotoxicity and molecular modelling studies of new phenylcinnamide derivatives as potent inhibitors of cholinesterases. Eur. J. Med. Chem., 2014, 78, 43-53.
[6]
Le Mellay-Hamon, V.; Criton, M. Phenylethylamide and phenylmethylamide derivatives as new tyrosinase inhibitors. Biol. Pharm. Bull., 2009, 32, 301-303.
[7]
Takahashi, T.; Miyazawa, M. Tyrosinase inhibitory activities of cinnamic acid analogues. Pharmazie, 2010, 65, 913-918.
[8]
Fan, Q.; Jiang, H.; Yuan, E.D.; Zhang, J.X.; Ning, Z.X.; Qi, S.J.; Wei, Q.Y. Tyrosinase inhibitory effects and antioxidative activities of novel cinnamoyl amides with amino acid ester moiety. Food Chem., 2012, 134, 1081-1087.
[9]
Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A.M.; Perrier, E.; Boumendjel, A. Analogues of N-hydroxycinnamoylphenalkylamides as inhibitors of human melanocyte-tyrosinase. Bioorg. Med. Chem. Lett., 2006, 16, 2252-2255.
[10]
Takahashi, T.; Miyazawa, M. Synthesis and structure-activity relationships of phenylpropanoid amides of serotonin on tyrosinase inhibition. Bioorg. Med. Chem. Lett., 2011, 21, 1983-1986.
[11]
Ullah, S.; Son, S.; Yun, H.Y.; Kim, D.H.; Chun, P.; Moon, H.R. Tyrosinase inhibitors: A patent review (2011-2015). Expert Opin. Ther. Pat., 2016, 26, 347-362.
[12]
Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Babar, M.M.; Zaidi, N.U. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem., 2015, 23, 5870-5880.
[13]
Song, J.; Lee, H.E.; Kim, Y.J.; Kim, S.Y.; Kim, D.S.; Min, K.H. Discovery of small molecules that inhibit melanogenesis via regulation of tyrosinase expression. Bioorg. Med. Chem. Lett., 2012, 22, 6943-6946.
[14]
Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Kwon, K.S.; Babar, M.M.; Zaidi, N.U. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur. J. Med. Chem., 2015, 98, 203-211.
[15]
Seo, S.Y.; Sharma, V.K.; Sharma, N. Mushroom tyrosinase: Recent prospects. J. Agric. Food Chem., 2003, 51, 2837-2853.
[16]
Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res., 2006, 19, 550-571.
[17]
Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res., 2003, 16, 101-110.
[18]
Hasegawa, T. Tyrosinase-expressing neuronal cell line as in vitro model of Parkinson’s disease. Int. J. Mol. Sci., 2010, 11, 1082-1089.
[19]
Tessari, I.; Bisaglia, M.; Valle, F.; Samori, B.; Bergantino, E.; Mammi, S.; Bubacco, L. The reaction of alpha-synuclein with tyrosinase: Possible implications for Parkinson disease. J. Biol. Chem., 2008, 283, 16808-16817.
[20]
Xia, C-n.; Li, H-b.; Liu, F.; Hu, W-x. Synthesis of trans-caffeate analogues and their bioactivities against HIV-1 integrase and cancer cell lines. Bioorg. Med. Chem. Lett., 2008, 18, 6553-6557.
[21]
Sheng, S.R.; Luo, Q.Y.; Huang, P.G.; Guo, L.; Wang, Q.Y.; Pei, X.L. Palladium-catalysed arylation of poly(ethylene glycol) bound acrylate with aryl iodides in water: A liquid-phase synthesis of trans-cinnamic acids. J. Chem. Res., 2006, 2006, 24-26.
[22]
Pinkerton, A.B.; Ardecky, R.; Serguienko, E.A.; Gonzalez-Lopez, M.; Reddy Ganji, S.; Zou, J. EBI2 Modulators. WO2015/048570 A2 2015.
[23]
Gasteiger, J.; Marsili, M. A new model for calculating atomic charges in molecules. Tetrahedron Lett., 1978, 19, 3181-3184.
[24]
Sousa da Silva, A.W.; Vranken, W.F. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes, 2012, 5, 367.
[25]
Morley, S.D.; Afshar, M. Validation of an empirical RNA-ligand scoring function for fast flexible docking using Ribodock. J. Comput. Aided Mol. Des., 2004, 18, 189-208.
[26]
Masamoto, Y.; Iida, S.; Kubo, M. Inhibitory effect of Chinese crude drugs on tyrosinase. Planta Med., 1980, 40, 361-365.
[27]
Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol., 1994, 46, 982-985.
[28]
Gomez-Cordoves, C.; Bartolome, B.; Vieira, W.; Virador, V.M. Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. J. Agric. Food Chem., 2001, 49, 1620-1624.
[29]
Kim, H.J.; Seo, S.H.; Lee, B.G.; Lee, Y.S. Identification of tyrosinase inhibitors from Glycyrrhiza uralensis. Planta Med., 2005, 71, 785-787.
[30]
Matsuda, H.; Higashino, M.; Chen, W.; Tosa, H.; Iinuma, M.; Kubo, M. Studies of cuticle drugs from natural sources. III. Inhibitory effect of Myrica rubra on melanin biosynthesis. Biol. Pharm. Bull., 1995, 18, 1148-1150.
[31]
Picone, P.; Bondi, M.L.; Montana, G.; Bruno, A.; Pitarresi, G.; Giammona, G.; Di Carlo, M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic. Res., 2009, 43, 1133-1145.
[32]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 2011, 50, 5477-5486.

© 2025 Bentham Science Publishers | Privacy Policy