[2]
Chetty, S.; Ramesh, M.; Singh-Pillay, A.; Soliman, M.E.S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett., 2017, 27(3), 370-386.
[3]
Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev., 2016, 102, 55-72.
[4]
Bernardes-Génisson, V.; Deraeve, C.; Chollet, A.; Bernadou, J.; Pratviel, G. Isoniazid: an update on the multiple mechanisms for a singular action. Curr. Med. Chem., 2013, 20(35), 4370-4385.
[5]
Hughes, M.A.; Silva, J.C.; Geromanos, S.J.; Townsend, C.A. Quantitative proteomic analysis of drug-induced changes in mycobacteria. J. Proteome Res., 2006, 5(1), 54-63.
[6]
Campanerut-Sá, P.A.; Ghiraldi-Lopes, L.D.; Meneguello, J.E.; Fiorini, A.; Evaristo, G.P.; Siqueira, V.L.; Scodro, R.B.L.; Patussi, E.V.; Donatti, L.; Souza, E.M.; Cardoso, R.F. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis. Future Microbiol., 2016, 11, 1123-1132.
[7]
Gopinath, V.; Raghunandanan, S.; Gomez, R.L.; Jose, L.; Surendran, A.; Ramachandran, R.; Pushparajan, A.R.; Mundayoor, S.; Jaleel, A.; Kumar, R.A. Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol. Cell. Proteomics, 2015, 14(8), 2160-2176.
[8]
Sharma, D.; Kumar, B.; Lata, M.; Joshi, B.; Venkatesan, K.; Shukla, S.; Bisht, D. Comparative proteomic analysis of aminoglycosides resistant and susceptible Mycobacterium tuberculosis clinical isolates for exploring potential drug targets. PLoS One, 2015, 10(10), e0139414.
[9]
Sharma, P.; Kumar, B.; Gupta, Y.; Singhal, N.; Katoch, V.M.; Venkatesan, K.; Bisht, D. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Proteome Sci., 2010, 8(1), 59.
[10]
Shen, H.; Yang, E.; Wang, F.; Jin, R.; Xu, S.; Huang, Q.; Wang, H. Altered protein expression patterns of Mycobacterium tuberculosis induced by ATB107. J. Microbiol., 2010, 48(3), 337-346.
[11]
Starck, J.; Källenius, G.; Marklund, B-I.; Andersson, D.I.; Akerlund, T. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology, 2004, 150, 3821-3829.
[12]
Westermeier, R.; Marouga, R. Protein detection methods in proteomics research. Biosci. Rep., 2005, 25(1-2), 19-32.
[13]
Unwin, R.D.; Whetton, A.D. How will haematologists use proteomics? Blood Rev., 2007, 21(6), 315-326.
[14]
Xu, Y.; Jia, H.; Huang, H.; Sun, Z.; Zhang, Z. Mutations
found in embCAB, embR, and ubiA genes of
ethambutol-sensitive and -resistant Mycobacterium
tuberculosis clinical isolates from China. Biomed Res.
Int., 2015, 2015
[15]
Jia, L.; Coward, L.; Gorman, G.S.; Noker, P.E.; Tomaszewski, J.E. Pharmacoproteomic effects of isoniazid, ethambutol, and N-geranyl-N'-(2-adamantyl)ethane-1,2-diamine (SQ109) on Mycobacterium tuberculosis H37Rv. J. Pharmacol. Exp. Ther., 2005, 315(2), 905-911.
[16]
Jiang, T.; Zhan, Y.; Sun, M.; Liu, S.; Zang, S.; Ma, Y.; Xin, Y. The novel responses of ethambutol against Mycobacterium smegmatis mc2155 Revealed by proteomics analysis. Curr. Microbiol., 2011, 62(2), 341-345.
[17]
Wang, R.; Marcotte, E.M. The proteomic response of Mycobacterium smegmatis to anti-tuberculosis drugs suggests targeted pathways. J. Proteome Res., 2008, 7(3), 855-865.
[18]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(8), 2720-2722.
[19]
de Steenwinkel, J.E.M.; de Knegt, G.J.; ten Kate, M.T.; van Belkum, A.; Verbrugh, H.A.; Kremer, K.; van Soolingen, D.; Bakker-Woudenberg, I.A.J.M. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2010, 65(12), 2582-2589.
[20]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[21]
Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 1988, 9(6), 255-262.
[22]
Scodro, R.B.L.; Pires, C.T.A.; Carrara, V.S.; Lemos, C.O.T.; Cardozo-Filho, L.; Souza, V.A.; Corrêa, A.G.; Siqueira, V.L.D.; Lonardoni, M.V.C.; Cardoso, R.F.; Cortez, D.A.G. Anti-tuberculosis neolignans from Piper regnellii. Phytomedicine, 2013, 20(7), 600-604.
[23]
Pires, C.T.A.; Brenzan, M.A.; Scodro, R.B.L.; Cortez, D.A.G.; Lopes, L.D.G.; Siqueira, V.L.D.; Cardoso, R.F. Anti-Mycobacterium tuberculosis activity and cytotoxicity of Calophyllum brasiliense Cambess (Clusiaceae). Mem. Inst. Oswaldo Cruz, 2014, 109(3), 324-329.
[24]
Lopes, M.A.; Ferracioli, K.R.; Siqueira, V.L.D.; de Lima Scodro, R.B.; Cortez, D.A.G.; da Silva, R.Z.; Cardoso, R.F. In vitro interaction of eupomatenoid-5 from Piper solmsianum C. DC. var. solmsianum and anti-tuberculosis drugs. Int. J. Tuberc. Lung Dis., 2014, 18(12), 1513-1515.
[25]
Demitto, F.O.; Amaral, R.C.R.; Maltempe, F.G.; Siqueira, V.L.D.; Scodro, R.B.L.; Lopes, M.A.; Caleffi-Ferracioli, K.R.; Canezin, P.H.; Cardoso, R.F. In vitro activity of rifampicin and verapamil combination in multidrug-resistant Mycobacterium tuberculosis. PLoS One, 2015, 10(2), 1-9.
[26]
Pagliotto, A.D.F.; Caleffi-Ferracioli, K.R.; Lopes, M.A.; Baldin, V.P.; Leite, C.Q.F.; Pavan, F.R.; Scodro, R.B.L.; Siqueira, V.L.D.; Cardoso, R.F. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. J. Microbiol. Immunol. Infect., 2016, 49(6), 980-983.
[27]
Caleffi-Ferracioli, K.R.; Amaral, R.C.R.; Demitto, F.O.; Maltempe, F.G.; Canezin, P.H.; Scodro, R.B.L.; Nakamura, C.V.; Leite, C.Q.F.; Siqueira, V.L.D.; Cardoso, R.F. Morphological changes and differentially expressed efflux pump genes in Mycobacterium tuberculosis exposed to a rifampicin and verapamil combination. Tuberculosis (Edinb.), 2016, 97, 65-72.
[28]
Wagner, T.; Bellinzoni, M.; Wehenkel, A.; O’Hare, H.M.; Alzari, P.M. Functional plasticity and allosteric regulation of α-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem. Biol., 2011, 18(8), 1011-1020.
[29]
Tian, J.; Bryk, R.; Itoh, M.; Suematsu, M.; Nathan, C. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of α-ketoglutarate decarboxylase. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10670-10675.
[30]
Venugopal, A.; Bryk, R.; Shi, S.; Rhee, K.; Rath, P.; Schnappinger, D.; Ehrt, S.; Nathan, C. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe, 2011, 9(1), 21-31.
[31]
Grant, G.A. Contrasting catalytic and allosteric mechanisms for phosphoglycerate dehydrogenases. Arch. Biochem. Biophys., 2012, 519(2), 175-185.
[32]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[33]
Burton, R.L.; Chen, S.; Xu, X.L.; Grant, G.A. A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J. Biol. Chem., 2007, 282(43), 31517-31524.
[34]
Dey, S.; Burton, R.L.; Grant, G.A.; Sacchettini, J.C. Structural analysis of substrate and effector binding in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. Biochemistry, 2008, 47(32), 8271-8282.
[35]
Dey, S.; Grant, G.A.; Sacchettini, J.C. Crystal structure of Mycobacterium tuberculosis D-3-phospho-glycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J. Biol. Chem., 2005, 280(15), 14892-14899.
[36]
Sinha, S.; Arora, S.; Kosalai, K.; Namane, A.; Pym, A.S.; Cole, S.T. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp. Funct. Genomics, 2002, 3(6), 470-483.
[37]
Albrethsen, J.; Agner, J.; Piersma, S.R.; Højrup, P.; Pham, T.V.; Weldingh, K.; Jimenez, C.R.; Andersen, P.; Rosenkrands, I. Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol. Cell. Proteomics, 2013, 12(5), 1180-1191.
[39]
Bibb, L.A.; Hancox, M.I.; Hatfull, G.F. Integration and excision by the large serine recombinase phiRv1 integrase. Mol. Microbiol., 2005, 55(6), 1896-1910.
[41]
Lin, P.L.; Dietrich, J.; Tan, E.; Abalos, R.M.; Burgos, J.; Bigbee, C.; Bigbee, M.; Milk, L.; Gideon, H.P.; Rodgers, M.; Cochran, C.; Guinn, K.M.; Sherman, D.R.; Klein, E.; Janssen, C.; Flynn, J.L.; Andersen, P. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Invest., 2012, 122(1), 303-314.
[42]
Olsen, I.; Balasingham, S.V.; Davidsen, T.; Debebe, E.; Rødland, E.A.; van Soolingen, D.; Kremer, K.; Alseth, I.; Tønjum, T. Characterization of the major formamidopyrimidine-DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats. FEMS Immunol. Med. Microbiol., 2009, 56(2), 151-161.
[43]
Mowbray, S.L.; Kathiravan, M.K.; Pandey, A.A.; Odell, L.R. Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis. Molecules, 2014, 19(9), 13161-13176.
[44]
Chandra, H.; Basir, S.F.; Gupta, M.; Banerjee, N. Glutamine synthetase encoded by glnA-1 is necessary for cell wall resistance and pathogenicity of Mycobacterium bovis. Microbiology, 2010, 156(Pt 12), 3669-3677.
[45]
Singhal, A.; Arora, G.; Sajid, A.; Maji, A.; Bhat, A.; Virmani, R.; Upadhyay, S.; Nandicoori, V.K.; Sengupta, S.; Singh, Y. Regulation of homocysteine metabolism by Mycobacterium tuberculosis S-adenosylhomocysteine hydrolase. Sci. Rep., 2013, 3, 2264.
[46]
Singhal, N.; Sharma, P.; Kumar, M.; Joshi, B.; Bisht, D. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci., 2012, 10(1), 14.