[1]
Ma, X.; Yu, H. Global burden of cancer. Yale J. Biol. Med., 2006, 79(3-4), 85-94.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[3]
Kanavos, P. The rising burden of cancer in the developing world. Ann Oncol, 2006, 14(Suppl 8), viii15-viii23.
[4]
Jackson, S.P. Detecting, signalling and repairing DNA double-strand breaks. Biochem. Soc. Trans., 2001, 29(Pt 6), 655-661.
[5]
Majsterek, I.; Slupianek, A.; Hoser, G.; Skórski, T.; Blasiak, J. ABL-fusion oncoproteins activate multi-pathway of DNA repair: Role in drug resistance? Biochimie, 2004, 86(1), 53-65.
[6]
Hakem, R. DNA-damage repair; the good, the bad, and the ugly. EMBO J., 2008, 27(4), 589-605.
[7]
Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell, 2010, 40(2), 179-204.
[8]
Lindahl, T. Instability and decay of the primary structure of DNA. Nature, 1993, 362(6422), 709-715.
[9]
Yao, Y.; Dai, W. Genomic Instability and Cancer. J. Carcinog. Mutagen., 2014, 5, 1000165.
[10]
De Bont, R.; van Larebeke, N. Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis, 2004, 19(3), 169-185.
[11]
Przybylowska, K.; Kabzinski, J.; Sygut, A.; Dziki, L.; Dziki, A.; Majsterek, I. An association selected polymorphisms of XRCC1, OGG1 and MUTYH gene and the level of efficiency oxidative DNA damage repair with a risk of colorectal cancer. Mutat. Res., 2013, 745-746, 6-15.
[12]
Dietlein, F.; Thelen, L.; Reinhardt, H.C. Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches. Trends Genet., 2014, 30(8), 326-339.
[13]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461(7267), 1071-1078.
[14]
O’Connor, M.J.; Martin, N.M.; Smith, G.C. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene, 2007, 26(56), 7816-7824.
[15]
Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[16]
Hosoya, N.; Miyagawa, K. Targeting DNA damage response in cancer therapy. Cancer Sci., 2014, 105(4), 370-388.
[17]
Macheret, M.; Halazonetis, T.D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol., 2015, 10, 425-448.
[18]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[19]
Weber, A.M.; Ryan, A.J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther., 2015, 149, 124-138.
[20]
Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability--an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(3), 220-228.
[21]
Goldstein, M.; Kastan, M.B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med., 2015, 66, 129-143.
[22]
Liu, L.J.; Wang, W.; Huang, S.Y.; Hong, Y.; Li, G.; Lin, S.; Tian, J.; Cai, Z.; Wang, H.D.; Ma, D.L.; Leung, C.H. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(iii) metal-based compound. Chem. Sci. (Camb.), 2017, 8(7), 4756-4763.
[23]
Leung, C.H.; Chan, D.S.; Yang, H.; Abagyan, R.; Lee, S.M.; Zhu, G.Y.; Fong, W.F.; Ma, D.L. A natural product-like inhibitor of NEDD8-activating enzyme. Chem. Commun. (Camb.), 2011, 47(9), 2511-2513.
[24]
Ma, D.L.; Chan, D.S.; Wei, G.; Zhong, H.J.; Yang, H.; Leung, L.T.; Gullen, E.A.; Chiu, P.; Cheng, Y.C.; Leung, C.H. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library. Chem. Commun. (Camb.), 2014, 50(90), 13885-13888.
[25]
Munoz, L. Non-kinase targets of protein kinase inhibitors. Nat. Rev. Drug Discov., 2017, 16(6), 424-440.
[26]
Curtin, N.J. Inhibiting the DNA damage response as a therapeutic manoeuvre in cancer. Br. J. Pharmacol., 2013, 169(8), 1745-1765.
[27]
Rundle, S.; Bradbury, A.; Drew, Y.; Curtin, N.J. Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel), 2017, 9(5), E41.
[28]
Stokes, M.P.; Rush, J.; Macneill, J.; Ren, J.M.; Sprott, K.; Nardone, J.; Yang, V.; Beausoleil, S.A.; Gygi, S.P.; Livingstone, M.; Zhang, H.; Polakiewicz, R.D.; Comb, M.J. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl. Acad. Sci. USA, 2007, 104(50), 19855-19860.
[29]
Lempiäinen, H.; Halazonetis, T.D. Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J., 2009, 28(20), 3067-3073.
[30]
Mordes, D.A.; Glick, G.G.; Zhao, R.; Cortez, D. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain. Genes Dev., 2008, 22(11), 1478-1489.
[31]
Maréchal, A.; Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a012716.
[32]
Shiloh, Y. ATM and related protein kinases: Safeguarding genome integrity. Nat. Rev. Cancer, 2003, 3(3), 155-168.
[33]
Cliby, W.A.; Roberts, C.J.; Cimprich, K.A.; Stringer, C.M.; Lamb, J.R.; Schreiber, S.L.; Friend, S.H. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J., 1998, 17(1), 159-169.
[34]
Tibbetts, R.S.; Brumbaugh, K.M.; Williams, J.M.; Sarkaria, J.N.; Cliby, W.A.; Shieh, S.Y.; Taya, Y.; Prives, C.; Abraham, R.T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev., 1999, 13(2), 152-157.
[35]
Jiang, X.; Sun, Y.; Chen, S.; Roy, K.; Price, B.D. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J. Biol. Chem., 2006, 281(23), 15741-15746.
[36]
Wagner, J.M.; Kaufmann, S.H. Prospects for the Use of ATR Inhibitors to Treat Cancer. Pharmaceuticals (Basel), 2010, 3(5), 1311-1334.
[37]
Bosotti, R.; Isacchi, A.; Sonnhammer, E.L. FAT: A novel domain in PIK-related kinases. Trends Biochem. Sci., 2000, 25(5), 225-227.
[38]
Mordes, D.A.; Cortez, D. Activation of ATR and related PIKKs. Cell Cycle, 2008, 7(18), 2809-2812.
[39]
Li, Y.; Zhang, J.; Gao, W.; Zhang, L.; Pan, Y.; Zhang, S.; Wang, Y. Insights on structural characteristics and ligand binding mechanisms of CDK2. Int. J. Mol. Sci., 2015, 16(5), 9314-9340.
[40]
Hardcastle, I.R.; Golding, B.T.; Griffin, R.J. Designing inhibitors of cyclin-dependent kinases. Annu. Rev. Pharmacol. Toxicol., 2002, 42, 325-348.
[41]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[42]
Meyerson, M.; Enders, G.H.; Wu, C.L.; Su, L.K.; Gorka, C.; Nelson, C.; Harlow, E.; Tsai, L.H. A family of human cdc2-related protein kinases. EMBO J., 1992, 11(8), 2909-2917.
[43]
Sausville, E.A. Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol. Med., 2002, 8(4)(Suppl.), S32-S37.
[44]
Johnson, N.; Shapiro, G.I. Cyclin-dependent kinases (cdks) and the DNA damage response: rationale for cdk inhibitor-chemotherapy combinations as an anticancer strategy for solid tumors. Expert Opin. Ther. Targets, 2010, 14(11), 1199-1212.
[45]
Drapkin, R.; Le Roy, G.; Cho, H.; Akoulitchev, S.; Reinberg, D. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc. Natl. Acad. Sci. USA, 1996, 93(13), 6488-6493.
[46]
Malumbres, M.; Harlow, E.; Hunt, T.; Hunter, T.; Lahti, J.M.; Manning, G.; Morgan, D.O.; Tsai, L.H.; Wolgemuth, D.J. Cyclin-dependent kinases: A family portrait. Nat. Cell Biol., 2009, 11(11), 1275-1276.
[47]
Pines, J. The cell cycle kinases. Semin. Cancer Biol., 1994, 5(4), 305-313.
[48]
Sherr, C.J. Cancer cell cycles. Science, 1996, 274(5293), 1672-1677.
[49]
Hall, M.; Peters, G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv. Cancer Res., 1996, 68, 67-108.
[50]
Ortega, S.; Malumbres, M.; Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta, 2002, 1602(1), 73-87.
[51]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[52]
Whittaker, S.R.; Walton, M.I.; Garrett, M.D.; Workman, P. The Cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of Cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res., 2004, 64(1), 262-272.
[53]
Shapiro, G.I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol., 2006, 24(11), 1770-1783.
[54]
Sánchez-Martínez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett., 2015, 25(17), 3420-3435.
[55]
Pentimalli, F.; Giordano, A. Promises and drawbacks of targeting cell cycle kinases in cancer. Discov. Med., 2009, 8(43), 177-180.
[56]
de Azevedo, W.F. Opinion Paper: Targeting Multiple Cyclin-Dependent Kinases (CDKs): A New Strategy for Molecular Docking Studies. Curr. Drug Targets, 2016, 17(1), 2.
[57]
Kitagawa, R.; Kastan, M.B. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb. Symp. Quant. Biol., 2005, 70, 99-109.
[58]
Ta, H.Q.; Gioeli, D. The convergence of DNA damage checkpoint pathways and androgen receptor signaling in prostate cancer. Endocr. Relat. Cancer, 2014, 21(5), R395-R407.
[59]
Bakkenist, C.J.; Kastan, M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003, 421(6922), 499-506.
[60]
Barlow, C.; Liyanage, M.; Moens, P.B.; Tarsounas, M.; Nagashima, K.; Brown, K.; Rottinghaus, S.; Jackson, S.P.; Tagle, D.; Ried, T.; Wynshaw-Boris, A. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development, 1998, 125(20), 4007-4017.
[61]
Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev., 2001, 15(17), 2177-2196.
[62]
Lavin, M.F. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene, 2007, 26(56), 7749-7758.
[63]
Paull, T.T.; Lee, J.H. The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM. Cell Cycle, 2005, 4(6), 737-740.
[64]
Burma, S.; Chen, B.P.; Murphy, M.; Kurimasa, A.; Chen, D.J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J. Biol. Chem., 2001, 276(45), 42462-42467.
[65]
Tanaka, T.; Huang, X.; Jorgensen, E.; Gietl, D.; Traganos, F.; Darzynkiewicz, Z.; Albino, A.P. ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol., 2007, 8, 26.
[66]
Sun, Y.; Xu, Y.; Roy, K.; Price, B.D. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol. Cell. Biol., 2007, 27(24), 8502-8509.
[67]
Banin, S.; Moyal, L.; Shieh, S.; Taya, Y.; Anderson, C.W.; Chessa, L.; Smorodinsky, N.I.; Prives, C.; Reiss, Y.; Shiloh, Y.; Ziv, Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998, 281(5383), 1674-1677.
[68]
Shieh, S.Y.; Ahn, J.; Tamai, K.; Taya, Y.; Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev., 2000, 14(3), 289-300.
[69]
Brown, E.J.; Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev., 2003, 17(5), 615-628.
[70]
Thu, H.E.; Hussain, Z.; Mohamed, I.N.; Shuid, A.N. Eurycoma longifolia, a potential phytomedicine for the treatment of cancer: Evidence of p53-mediated apoptosis in cancerous cells. Curr. Drug Targets, 2017.
[71]
Shangary, S.; Wang, S. Targeting the MDM2-p53 interaction for cancer therapy. Clin. Cancer Res., 2008, 14(17), 5318-5324.
[72]
Sun, W.; Tang, L. MDM2 Increases Drug Resistance in Cancer Cells by Inducing EMT Independent of p53. Curr. Med. Chem., 2016, 23(40), 4529-4539.
[73]
Liu, D.; Huang, C.L.; Kameyama, K.; Hayashi, E.; Yamauchi, A.; Sumitomo, S.; Yokomise, H. Topoisomerase IIalpha gene expression is regulated by the p53 tumor suppressor gene in nonsmall cell lung carcinoma patients. Cancer, 2002, 94(8), 2239-2247.
[74]
Arcy, D. N.; Gabrielli, B. Topoisomerase II Inhibitors and Poisons, and the Influence of Cell Cycle Checkpoints. Curr. Med. Chem., 2017, 24(15), 1504-1519.
[75]
Alarcon-Vargas, D.; Ronai, Z. p53-Mdm2--the affair that never ends. Carcinogenesis, 2002, 23(4), 541-547.
[76]
Kobet, E.; Zeng, X.; Zhu, Y.; Keller, D.; Lu, H. MDM2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12547-12552.
[77]
Lee, Y.; Lim, H.S. Skp2 Inhibitors: Novel Anticancer Strategies. Curr. Med. Chem., 2016, 23(22), 2363-2379.
[78]
Chène, P. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer, 2003, 3(2), 102-109.
[79]
Gannon, H.S.; Woda, B.A.; Jones, S.N. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell, 2012, 21(5), 668-679.
[80]
Herbig, U.; Jobling, W.A.; Chen, B.P.; Chen, D.J.; Sedivy, J.M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell, 2004, 14(4), 501-513.
[81]
Sullivan, K.D.; Gallant-Behm, C.L.; Henry, R.E.; Fraikin, J.L.; Espinosa, J.M. The p53 circuit board. Biochim. Biophys. Acta, 2012, 1825(2), 229-244.
[82]
Rozpedek, W.; Nowak, A.; Pytel, D.; Diehl, J.A.; Majsterek, I. Molecular basis of human diseases and targeted therapy based on small-molecule inhibitors of ER stress-induced signaling pathways. Curr. Mol. Med., 2017, 17(2), 118-132.
[83]
Matsuoka, S.; Rotman, G.; Ogawa, A.; Shiloh, Y.; Tamai, K.; Elledge, S.J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10389-10394.
[84]
Shen, T.; Huang, S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer. Agents Med. Chem., 2012, 12(6), 631-639.
[85]
Falck, J.; Mailand, N.; Syljuåsen, R.G.; Bartek, J.; Lukas, J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 2001, 410(6830), 842-847.
[86]
Thanasoula, M.; Escandell, J.M.; Suwaki, N.; Tarsounas, M. ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres. EMBO J., 2012, 31(16), 3398-3410.
[87]
Benada, J.; Macurek, L. Targeting the Checkpoint to Kill Cancer Cells. Biomolecules, 2015, 5(3), 1912-1937.
[88]
Zajac, M.; Muszalska, I.; Jelinska, A. New Molecular Targets of Anticancer Therapy - Current status and perspectives. Curr. Med. Chem., 2016, 23(37), 4176-4220.
[89]
Levin, N.M.; Pintro, V.O.; de Avila, M.B.; de Mattos, B.B.; De Azevedo, W.F. Jr Understanding the Structural Basis for Inhibition of Cyclin-Dependent Kinases. New Pieces in the Molecular Puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[90]
Heck, G.S.; Pintro, V.O.; Pereira, R.R.; de Ávila, M.B.; Levin, N.M.; de Azevedo, W.F. Supervised machine learning methods applied to predict ligand- binding affinity. Curr. Med. Chem., 2017, 24(23), 2459-2470.
[91]
Luo, Y.; Lou, S.; Deng, X.; Liu, Z.; Li, Y.; Kleiboeker, S.; Qiu, J. Parvovirus B19 infection of human primary erythroid progenitor cells triggers ATR-Chk1 signaling, which promotes B19 virus replication. J. Virol., 2011, 85(16), 8046-8055.
[92]
Ball, H.L.; Myers, J.S.; Cortez, D. ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol. Biol. Cell, 2005, 16(5), 2372-2381.
[93]
Bomgarden, R.D.; Yean, D.; Yee, M.C.; Cimprich, K.A. A novel protein activity mediates DNA binding of an ATR-ATRIP complex. J. Biol. Chem., 2004, 279(14), 13346-13353.
[94]
Yan, S.; Michael, W.M. TopBP1 and DNA polymerase-alpha directly recruit the 9-1-1 complex to stalled DNA replication forks. J. Cell Biol., 2009, 184(6), 793-804.
[95]
Liu, Q.; Guntuku, S.; Cui, X.S.; Matsuoka, S.; Cortez, D.; Tamai, K.; Luo, G.; Carattini-Rivera, S.; DeMayo, F.; Bradley, A.; Donehower, L.A.; Elledge, S.J. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev., 2000, 14(12), 1448-1459.
[96]
Jeong, S.Y.; Kumagai, A.; Lee, J.; Dunphy, W.G. Phosphorylated claspin interacts with a phosphate-binding site in the kinase domain of Chk1 during ATR-mediated activation. J. Biol. Chem., 2003, 278(47), 46782-46788.
[97]
Liu, S.; Bekker-Jensen, S.; Mailand, N.; Lukas, C.; Bartek, J.; Lukas, J. Claspin operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. Mol. Cell. Biol., 2006, 26(16), 6056-6064.
[98]
Manic, G.; Obrist, F.; Sistigu, A.; Vitale, I. Trial Watch: Targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol. Cell. Oncol., 2015, 2(4), e1012976.
[99]
Sandoval, N.; Platzer, M.; Rosenthal, A.; Dörk, T.; Bendix, R.; Skawran, B.; Stuhrmann, M.; Wegner, R.D.; Sperling, K.; Banin, S.; Shiloh, Y.; Baumer, A.; Bernthaler, U.; Sennefelder, H.; Brohm, M.; Weber, B.H.; Schindler, D. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum. Mol. Genet., 1999, 8(1), 69-79.
[100]
Thompson, D.; Duedal, S.; Kirner, J.; McGuffog, L.; Last, J.; Reiman, A.; Byrd, P.; Taylor, M.; Easton, D.F. Cancer risks and mortality in heterozygous ATM mutation carriers. J. Natl. Cancer Inst., 2005, 97(11), 813-822.
[101]
Wang, C.; Jette, N.; Moussienko, D.; Bebb, D.G.; Lees-Miller, S.P. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib. Transl. Oncol., 2017, 10(2), 190-196.
[102]
Dombernowsky, S.L.; Weischer, M.; Allin, K.H.; Bojesen, S.E.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Risk of cancer by ATM missense mutations in the general population. J. Clin. Oncol., 2008, 26(18), 3057-3062.
[103]
Perlman, S.; Becker-Catania, S.; Gatti, R.A. Ataxia-telangiectasia: diagnosis and treatment. Semin. Pediatr. Neurol., 2003, 10(3), 173-182.
[104]
Choi, M.; Kipps, T.; Kurzrock, R. ATM Mutations in Cancer: Therapeutic Implications. Mol. Cancer Ther., 2016, 15(8), 1781-1791.
[105]
Hammond, E.M.; Muschel, R.J. Radiation and ATM inhibition: The heart of the matter. J. Clin. Invest., 2014, 124(8), 3289-3291.
[106]
Rainey, M.D.; Charlton, M.E.; Stanton, R.V.; Kastan, M.B. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res., 2008, 68(18), 7466-7474.
[107]
Velic, D.; Couturier, A.M.; Ferreira, M.T.; Rodrigue, A.; Poirier, G.G.; Fleury, F.; Masson, J.Y. DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles’ Heel of Cancer. Biomolecules, 2015, 5(4), 3204-3259.
[108]
Blasina, A.; Price, B.D.; Turenne, G.A.; McGowan, C.H. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol., 1999, 9(19), 1135-1138.
[109]
Sarkaria, J.N.; Tibbetts, R.S.; Busby, E.C.; Kennedy, A.P.; Hill, D.E.; Abraham, R.T. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res., 1998, 58(19), 4375-4382.
[110]
Sarkaria, J.N.; Busby, E.C.; Tibbetts, R.S.; Roos, P.; Taya, Y.; Karnitz, L.M.; Abraham, R.T. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res., 1999, 59(17), 4375-4382.
[112]
Pasapera Limón, A.M.; Herrera-Muñoz, J.; Gutiérrez-Sagal, R.; Ulloa-Aguirre, A. The phosphatidylinositol 3-kinase inhibitor LY294002 binds the estrogen receptor and inhibits 17beta-estradiol-induced transcriptional activity of an estrogen sensitive reporter gene. Mol. Cell. Endocrinol., 2003, 200(1-2), 199-202.
[113]
Vlahos, C.J.; Matter, W.F.; Hui, K.Y.; Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem., 1994, 269(7), 5241-5248.
[114]
Hickson, I.; Zhao, Y.; Richardson, C.J.; Green, S.J.; Martin, N.M.; Orr, A.I.; Reaper, P.M.; Jackson, S.P.; Curtin, N.J.; Smith, G.C. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res., 2004, 64(24), 9152-9159.
[115]
Biddlestone-Thorpe, L.; Sajjad, M.; Rosenberg, E.; Beckta, J.M.; Valerie, N.C.; Tokarz, M.; Adams, B.R.; Wagner, A.F.; Khalil, A.; Gilfor, D.; Golding, S.E.; Deb, S.; Temesi, D.G.; Lau, A.; O’Connor, M.J.; Choe, K.S.; Parada, L.F.; Lim, S.K.; Mukhopadhyay, N.D.; Valerie, K. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin. Cancer Res., 2013, 19(12), 3189-3200.
[116]
Golding, S.E.; Rosenberg, E.; Valerie, N.; Hussaini, I.; Frigerio, M.; Cockcroft, X.F.; Chong, W.Y.; Hummersone, M.; Rigoreau, L.; Menear, K.A.; O’Connor, M.J.; Povirk, L.F.; van Meter, T.; Valerie, K. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol. Cancer Ther., 2009, 8(10), 2894-2902.
[117]
Batey, M.A.; Zhao, Y.; Kyle, S.; Richardson, C.; Slade, A.; Martin, N.M.; Lau, A.; Newell, D.R.; Curtin, N.J. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol. Cancer Ther., 2013, 12(6), 959-967.
[118]
Grosjean-Raillard, J.; Tailler, M.; Adès, L.; Perfettini, J.L.; Fabre, C.; Braun, T.; De Botton, S.; Fenaux, P.; Kroemer, G. ATM mediates constitutive NF-kappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene, 2009, 28(8), 1099-1109.
[119]
Murga, M.; Campaner, S.; Lopez-Contreras, A.J.; Toledo, L.I.; Soria, R.; Montaña, M.F.; Artista, L.; Schleker, T.; Guerra, C.; Garcia, E.; Barbacid, M.; Hidalgo, M.; Amati, B.; Fernandez-Capetillo, O. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol., 2011, 18(12), 1331-1335.
[120]
Gilad, O.; Nabet, B.Y.; Ragland, R.L.; Schoppy, D.W.; Smith, K.D.; Durham, A.C.; Brown, E.J. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res., 2010, 70(23), 9693-9702.
[121]
Caporali, S.; Falcinelli, S.; Starace, G.; Russo, M.T.; Bonmassar, E.; Jiricny, J.; D’Atri, S. DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol. Pharmacol., 2004, 66(3), 478-491.
[122]
Sarkaria, J.N.; Eshleman, J.S. ATM as a target for novel radiosensitizers. Semin. Radiat. Oncol., 2001, 11(4), 316-327.
[123]
Karnitz, L.M.; Zou, L. Molecular Pathways: Targeting ATR in Cancer Therapy. Clin. Cancer Res., 2015, 21(21), 4780-4785.
[124]
Peasland, A.; Wang, L.Z.; Rowling, E.; Kyle, S.; Chen, T.; Hopkins, A.; Cliby, W.A.; Sarkaria, J.; Beale, G.; Edmondson, R.J.; Curtin, N.J. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br. J. Cancer, 2011, 105(3), 372-381.
[125]
Toledo, L.I.; Murga, M.; Zur, R.; Soria, R.; Rodriguez, A.; Martinez, S.; Oyarzabal, J.; Pastor, J.; Bischoff, J.R.; Fernandez-Capetillo, O. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol., 2011, 18(6), 721-727.
[126]
Wieringa, H.W.; van der Zee, A.G.; de Vries, E.G.; van Vugt, M.A. Breaking the DNA damage response to improve cervical cancer treatment. Cancer Treat. Rev., 2016, 42, 30-40.
[127]
Charrier, J.D.; Durrant, S.J.; Golec, J.M.; Kay, D.P.; Knegtel, R.M.; MacCormick, S.; Mortimore, M.; O’Donnell, M.E.; Pinder, J.L.; Reaper, P.M.; Rutherford, A.P.; Wang, P.S.; Young, S.C.; Pollard, J.R. Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J. Med. Chem., 2011, 54(7), 2320-2330.
[128]
Prevo, R.; Fokas, E.; Reaper, P.M.; Charlton, P.A.; Pollard, J.R.; McKenna, W.G.; Muschel, R.J.; Brunner, T.B. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol. Ther., 2012, 13(11), 1072-1081.
[129]
Reaper, P.M.; Griffiths, M.R.; Long, J.M.; Charrier, J.D.; Maccormick, S.; Charlton, P.A.; Golec, J.M.; Pollard, J.R. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol., 2011, 7(7), 428-430.
[130]
Pires, I.M.; Olcina, M.M.; Anbalagan, S.; Pollard, J.R.; Reaper, P.M.; Charlton, P.A.; McKenna, W.G.; Hammond, E.M. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br. J. Cancer, 2012, 107(2), 291-299.
[131]
Fujisawa, H.; Nakajima, N.I.; Sunada, S.; Lee, Y.; Hirakawa, H.; Yajima, H.; Fujimori, A.; Uesaka, M.; Okayasu, R. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation. Radiat. Oncol., 2015, 10, 175.
[132]
Fokas, E.; Prevo, R.; Pollard, J.R.; Reaper, P.M.; Charlton, P.A.; Cornelissen, B.; Vallis, K.A.; Hammond, E.M.; Olcina, M.M.; Gillies McKenna, W.; Muschel, R.J.; Brunner, T.B. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis., 2012, 3, e441.
[133]
Hall, A.B.; Newsome, D.; Wang, Y.; Boucher, D.M.; Eustace, B.; Gu, Y.; Hare, B.; Johnson, M.A.; Milton, S.; Murphy, C.E.; Takemoto, D.; Tolman, C.; Wood, M.; Charlton, P.; Charrier, J.D.; Furey, B.; Golec, J.; Reaper, P.M.; Pollard, J.R. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget, 2014, 5(14), 5674-5685.
[134]
Vendetti, F.P.; Lau, A.; Schamus, S.; Conrads, T.P.; O’Connor, M.J.; Bakkenist, C.J. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget, 2015, 6(42), 44289-44305.
[135]
Guichard, S.M.; Brown, E.; Odedra, R.; Hughes, A.; Heathcote, D.; Barnes, J.; Lau, A.; Powell, S.; Jones, C.D.; Nissink, W.; Foote, K.M.; Jewsbury, P.J.; Pass, M. The pre-clinical in vitro and in vivo activity of AZD6738: A potent and selective inhibitor of ATR kinase. AACR Canc Res, 2013, 73(8), 3343.
[136]
Dillon, M.T.; Barker, H.E.; Pedersen, M.; Hafsi, H.; Bhide, S.A.; Newbold, K.L.; Nutting, C.M.; McLaughlin, M.; Harrington, K.J. Radiosensitization by the ATR Inhibitor AZD6738 through Generation of Acentric Micronuclei. Mol. Cancer Ther., 2017, 16(1), 25-34.
[137]
Min, A. Im, S.A.; Jang, H.; Kim, S.; Lee, M.; Kim, D.K.; Yang, Y.; Kim, H.J.; Lee, K.H.; Kim, J.W.; Kim, T.Y.; Oh, D.Y.; Brown, J.; Lau, A.; O’Connor, M.J.; Bang, Y.J. AZD6738, a novel oral inhibitor of atr, induces synthetic lethality with ATM deficiency in gastric cancer cells. Mol. Cancer Ther., 2017, 16(4), 566-577.
[138]
Kim, H.J.; Min, A.; Im, S.A.; Jang, H.; Lee, K.H.; Lau, A.; Lee, M.; Kim, S.; Yang, Y.; Kim, J.; Kim, T.Y.; Oh, D.Y.; Brown, J.; O’Connor, M.J.; Bang, Y.J. Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int. J. Cancer, 2017, 140(1), 109-119.
[139]
Hendriks, C.M.; Hartkamp, J.; Wiezorek, S.; Steinkamp, A.D.; Rossetti, G.; Lüscher, B.; Bolm, C. Sulfoximines as ATR inhibitors: Analogs of VE-821. Bioorg. Med. Chem. Lett., 2017, 27(12), 2659-2662.
[140]
Yadav, R.K.; Chae, S.W.; Kim, H.R.; Chae, H.J. Endoplasmic reticulum stress and cancer. J. Cancer Prev., 2014, 19(2), 75-88.
[141]
Bravo, R.; Parra, V.; Gatica, D.; Rodriguez, A.E.; Torrealba, N.; Paredes, F.; Wang, Z.V.; Zorzano, A.; Hill, J.A.; Jaimovich, E.; Quest, A.F.; Lavandero, S. Endoplasmic reticulum and the unfolded protein response: Dynamics and metabolic integration. Int. Rev. Cell Mol. Biol., 2013, 301, 215-290.
[142]
Vandewynckel, Y.P.; Laukens, D.; Geerts, A.; Bogaerts, E.; Paridaens, A.; Verhelst, X.; Janssens, S.; Heindryckx, F.; Van Vlierberghe, H. The paradox of the unfolded protein response in cancer. Anticancer Res., 2013, 33(11), 4683-4694.
[143]
Zhang, K.; Kaufman, R.J. Signaling the unfolded protein response from the endoplasmic reticulum. J. Biol. Chem., 2004, 279(25), 25935-25938.
[144]
Pytel, D.; Seyb, K.; Liu, M.; Ray, S.S.; Concannon, J.; Huang, M.; Cuny, G.D.; Diehl, J.A.; Glicksman, M.A. Enzymatic characterization of ER stress-dependent kinase, PERK, and development of a high-throughput assay for identification of PERK inhibitors. J. Biomol. Screen., 2014, 19(7), 1024-1034.
[145]
Brewer, J.W.; Diehl, J.A. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. USA, 2000, 97(23), 12625-12630.
[146]
Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J.A.; Majsterek, I. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Curr. Mol. Med., 2016, 16(6), 533-544.
[147]
Bauer, M.; Goldstein, M.; Heylmann, D.; Kaina, B. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant. PLoS One, 2012, 7(6), e39956.
[148]
Li, G.; Mongillo, M.; Chin, K.T.; Harding, H.; Ron, D.; Marks, A.R.; Tabas, I. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J. Cell Biol., 2009, 186(6), 783-792.
[149]
Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol., 2011, 13(3), 184-190.
[150]
Miller, E.; Markiewicz, Ł.; Saluk, J.; Majsterek, I. Effect of short-term cryostimulation on antioxidative status and its clinical applications in humans. Eur. J. Appl. Physiol., 2012, 112(5), 1645-1652.
[151]
Olas, B.; Wachowicz, B.; Majsterek, I.; Blasiak, J. Resveratrol may reduce oxidative stress induced by platinum compounds in human plasma, blood platelets and lymphocytes. Anticancer Drugs, 2005, 16(6), 659-665.
[152]
Rozpędek, W.; Pytel, D.; Dziki, Ł.; Nowak, A.; Dziki, A.; Diehl, J.A.; Majsterek, I. Inhibition of PERK-dependent pro-adaptive signaling pathway as a promising approach for cancer treatment. Pol. Przegl. Chir., 2017, 89(3), 7-10.
[153]
Liao, Y.; Gu, F.; Mao, X.; Niu, Q.; Wang, H.; Sun, Y.; Song, C.; Qiu, X.; Tan, L.; Ding, C. Regulation of de novo translation of host cells by manipulation of PERK/PKR and GADD34-PP1 activity during Newcastle disease virus infection. J. Gen. Virol., 2016, 97(4), 867-879.
[154]
Axten, J.M.; Romeril, S.P.; Shu, A.; Ralph, J.; Medina, J.R.; Feng, Y.; Li, W.H.; Grant, S.W.; Heerding, D.A.; Minthorn, E.; Mencken, T.; Gaul, N.; Goetz, A.; Stanley, T.; Hassell, A.M.; Gampe, R.T.; Atkins, C.; Kumar, R. Discovery of GSK2656157: An Optimized PERK Inhibitor Selected for Preclinical Development. ACS Med. Chem. Lett., 2013, 4(10), 964-968.
[155]
Atkins, C.; Liu, Q.; Minthorn, E.; Zhang, S.Y.; Figueroa, D.J.; Moss, K.; Stanley, T.B.; Sanders, B.; Goetz, A.; Gaul, N.; Choudhry, A.E.; Alsaid, H.; Jucker, B.M.; Axten, J.M.; Kumar, R. Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res., 2013, 73(6), 1993-2002.