Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design

Author(s): Agustín Yaneff*, Ana Sahores, Natalia Gómez, Alejandro Carozzo, Carina Shayo and Carlos Davio

Volume 26, Issue 7, 2019

Page: [1270 - 1307] Pages: 38

DOI: 10.2174/0929867325666171229133259

Price: $65

Abstract

MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.

Keywords: MRP4/ABCC4, cAMP, Drug design, binding sites, therapeutic-target, MRP inhibitors.

« Previous
[1]
Dean, M.; Annilo, T. Evolution of the ATP-binding cassette(ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet., 2005, 6(1), 123-142.
[2]
Borst, P.; de Wolf, C.; van de Wetering, K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch., 2007, 453(5), 661-673.
[3]
Wen, J.; Luo, J.; Huang, W.; Tang, J.; Zhou, H.; Zhang, W. The pharmacological and physiological role of multidrug-resistant protein 4. J. Pharmacol. Exp. Ther., 2015, 354(3), 358-375.
[4]
Rius, M.; Nies, A.T.; Hummel-Eisenbeiss, J.; Jedlitschky, G.; Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4(ABCC4) localized to the basolateral hepatocyte membrane. Hepatology, 2003, 38(2), 374-384.
[5]
Lee, K.; Klein-Szanto, A.J.; Kruh, G.D. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. J. Natl. Cancer Inst., 2000, 92(23), 1934-1940.
[6]
Leggas, M.; Adachi, M.; Scheffer, G.; Sun, D.; Wielinga, P.; Du, G.; Mercer, K.; Zhuang, Y.; Panetta, J.; Johnston, B.; Scheper, R.; Stewart, C.; Schuetz, J. MRP4 confers resistance to topotecan and protects the brain from chemotherapy. Mol. Cell. Biol., 2004, 24(17), 7612-7621.
[7]
van Aubel, R. a M.H.; Smeets, P.H.E.; Peters, J.G.P.; Bindels, R.J.M.; Russel, F.G.M. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol., 2002, 13(3), 595-603.
[8]
Smeets, P.H.E.; van Aubel, R.A.M.H.; Wouterse, A.C.; van den Heuvel, J.J.M.W.; Russel, F.G.M. Contribution of multidrug resistance protein 2(MRP2/ABCC2) to the renal excretion of p-aminohippurate(PAH) and identification of MRP4(ABCC4) as a novel PAH transporter. J. Am. Soc. Nephrol., 2004, 15(11), 2828-2835.
[9]
Lye, L.H.; Kench, J.G.; Handelsman, D.J.; Scheffer, G.L.; Stricker, P.D.; Grygiel, J.G.; Sutherland, R.L.; Henshall, S.M.; Allen, J.D.; Horvath, L.G. Androgen regulation of multidrug resistance-associated protein 4(MRP4/ABCC4) in prostate cancer. Prostate, 2008, 68(13), 1421-1429.
[10]
Cai, C.; Omwancha, J.; Hsieh, C.; Shemshedini, L. Androgen induces expression of the multidrug resistance protein gene MRP4 in prostate cancer cells. Prostate Cancer Prostatic Dis., 2007, 10(1), 39-45.
[11]
Maher, J.M.; Cheng, X.; Tanaka, Y.; Scheffer, G.L.; Klaassen, C.D. Hormonal regulation of renal multidrug resistance-associated proteins 3 and 4(Mrp3 and Mrp4) in mice. Biochem. Pharmacol., 2006, 71(10), 1470-1478.
[12]
Gradhand, U.; Lang, T.; Schaeffeler, E.; Glaeser, H.; Tegude, H.; Klein, K.; Fritz, P.; Jedlitschky, G.; Kroemer, H.K.; Bachmakov, I.; Anwald, B.; Kerb, R.; Zanger, U.M.; Eichelbaum, M.; Schwab, M.; Fromm, M.F. Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. Pharmacogenomics J., 2008, 8(1), 42-52.
[13]
Maher, J.M.; Dieter, M.Z.; Aleksunes, L.M.; Slitt, A.L.; Guo, G.; Tanaka, Y.; Scheffer, G.L.; Chan, J.Y.; Manautou, J.E.; Chen, Y.; Dalton, T.P.; Yamamoto, M.; Klaassen, C.D. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology, 2007, 46(5), 1597-1610.
[14]
Bröderdorf, S.; Zang, S.; Schaletzki, Y.; Grube, M.; Kroemer, H.K.; Jedlitschky, G. cAMP regulates expression of the cyclic nucleotide transporter MRP4(ABCC4) through the EPAC pathway. Pharmacogenet. Genomics, 2014, 24(10), 522-526.
[15]
Carozzo, A.; Diez, F.; Gomez, N.; Cabrera, M.; Shayo, C.; Davio, C.; Fernández, N. Dual role of cAMP in the transcriptional regulation of multidrug resistance-associated protein 4(MRP4) in pancreatic adenocarcinoma cell lines. PLoS One, 2015, 10(3), e0120651.www.ncbi.nlm.nih.gov/pmc/articles/PMC4366062/
[16]
Maeng, H.J.; Lee, W.J.; Jin, Q.R.; Chang, J.E.; Shim, W.S. Upregulation of COX-2 in the lung cancer promotes overexpression of multidrug resistance protein 4(MRP4) via PGE2-dependent pathway. Eur. J. Pharm. Sci., 2014, 62(June), 189-196.
[17]
Gu, X.; Manautou, J.E. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab. Rev., 2010, 42(3), 482-538.
[18]
Russel, F.G.M.; Koenderink, J.B.; Masereeuw, R. Multidrug resistance protein 4(MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci., 2008, 29(4), 200-207.
[19]
Norris, M.D.; Smith, J.; Tanabe, K.; Tobin, P.; Flemming, C.; Scheffer, G.L.; Wielinga, P.; Cohn, S.L.; London, W.B.; Marshall, G.M.; Allen, J.D.; Haber, M. Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Mol. Cancer Ther., 2005, 4(4), 547-553.
[20]
Copsel, S.; Garcia, C.; Diez, F.; Vermeulem, M.; Baldi, A.; Bianciotti, L.G.; Russel, F.G.M.; Shayo, C.; Davio, C. Multidrug resistance protein 4(MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. J. Biol. Chem., 2011, 286(9), 6979-6988.
[21]
Sinha, C.; Ren, A.; Arora, K.; Moon, C.S.; Yarlagadda, S.; Zhang, W.; Cheepala, S.B.; Schuetz, J.D.; Naren, A.P. Multi-drug resistance protein 4(MRP4)-mediated regulation of fibroblast cell migration reflects a dichotomous role of intracellular cyclic nucleotides. J. Biol. Chem., 2013, 288(6), 3786-3794.
[22]
Jedlitschky, G.; Greinacher, A.; Kroemer, H.K. Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood, 2012, 119(15), 3394-3402.
[23]
Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z-S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer, 2012, 31(2), 58-72.
[24]
Li, C.; Krishnamurthy, P.C.; Penmatsa, H.; Marrs, K.L.; Wang, X.Q.; Zaccolo, M.; Jalink, K.; Li, M.; Nelson, D.J.; Schuetz, J.D.; Naren, A.P. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia. Cell, 2007, 131(5), 940-951.
[25]
Sassi, Y.; Hara, Y.; Lompré, A.M.; Hulot, J.S. Multi-drug Resistance Protein 4(MRP4/ABCC4) and cyclic nucleotides signaling pathways. Cell Cycle, 2009, 8(7), 959-964.
[26]
Ritter, C.A.; Jedlitschky, G.; Meyer zu Schwabedissen, H.; Grube, M.; Köck, K.; Kroemer, H.K. Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4(ABCC4) and MRP5(ABCC5). Drug Metab. Rev., 2005, 37(1), 253-278.
[27]
Sager, G.; Ravna, A.W. Cellular efflux of cAMP and cGMP - a question about selectivity. Mini Rev. Med. Chem., 2009, 9(8), 1009-1013.
[28]
Buffone, M.G.; Wertheimer, E.V.; Visconti, P.E.; Krapf, D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim. Biophys. Acta, 2014, 1842(12 Pt B), 2610-2620.
[29]
Alonso, C.A.I.; Osycka-Salut, C.E.; Castellano, L.; Cesari, A.; Di Siervi, N.; Mutto, A.; Johannisson, A.; Morrell, J.M.; Davio, C.; Perez-Martinez, S. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol. Hum. Reprod., 2017, 23(8), 521-534.
[30]
Osycka-Salut, C.; Diez, F.; Burdet, J.; Gervasi, M.G.; Franchi, A.; Bianciotti, L.G.; Davio, C.; Perez-Martinez, S. Cyclic AMP efflux, via MRPs and A1 adenosine receptors, is critical for bovine sperm capacitation. Mol. Hum. Reprod., 2014, 20(1), 89-99.
[31]
Tagami, M.; Kusuhara, S.; Imai, H.; Uemura, A.; Honda, S.; Tsukahara, Y.; Negi, A. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells. Biochem. Biophys. Res. Commun., 2010, 400(4), 593-598.
[32]
van de Ven, R.; Scheffer, G.L.; Reurs, A.W.; Lindenberg, J.J.; Oerlemans, R.; Jansen, G.; Gillet, J.; Glasgow, J.N.; Pereboev, A.; Curiel, D.T.; Scheper, R.J.; de Gruijl, T.D. A role for multidrug resistance protein 4(MRP4; ABCC4) in human dendritic cell migration. Blood, 2008, 112(6), 2353-2359.
[33]
Zelcer, N.; Reid, G.; Wielinga, P.; Kuil, A.; van der Heijden, I.; Schuetz, J.D.; Borst, P. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein(MRP) 4(ATP-binding cassette C4). Biochem. J., 2003, 371(Pt 2), 361-367.
[34]
Denk, G.U.; Soroka, C.J.; Takeyama, Y.; Chen, W.; Schuetz, J.D.; Boyer, J.L. Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat. J. Hepatol., 2004, 40(4), 585-591.
[35]
Sassi, Y.; Lipskaia, L.; Vandecasteele, G.; Nikolaev, V.O.; Hatem, S.N.; Aubart, F.C.; Russel, F.G.; Mougenot, N.; Vrignaud, C.; Lechat, P.; Lompré, A.M.; Hulot, J.S. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J. Clin. Invest., 2008, 118(8), 2747-2757.
[36]
Chen, Z.S.; Lee, K.; Kruh, G.D. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem., 2001, 276(36), 33747-33754.
[37]
Fletcher, J.I.; Haber, M.; Henderson, M.J.; Norris, M.D. ABC transporters in cancer: more than just drug efflux pumps. Nat. Rev. Cancer, 2010, 10(2), 147-156.
[38]
Schuetz, J.; Connelly, M.; Sun, D.; Paibir, S.; Flynn, P.; Srinivas, R.; Kumar, A.; Fridland, A. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat. Med., 1999, 5(9), 1048-1051.
[39]
Imaoka, T.; Kusuhara, H.; Adachi, M.; Schuetz, J.D.; Takeuchi, K.; Sugiyama, Y. Functional involvement of multidrug resistance-associated protein 4(MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol., 2007, 71(2), 619-627.
[40]
Sassi, Y.; Abi-Gerges, A.; Fauconnier, J.; Mougenot, N.; Reiken, S.; Haghighi, K.; Kranias, E.G.; Marks, A.R.; Lacampagne, A.; Engelhardt, S.; Hatem, S.N.; Lompre, A.M.; Hulot, J.S. Regulation of cAMP homeostasis by the efflux protein MRP4 in cardiac myocytes. FASEB J., 2012, 26(3), 1009-1017.
[41]
Belleville-rolland, T.; Sassi, Y.; Decouture, B.; Dreano, E.; Hulot, J.; Gaussem, P.; Bachelot-loza, C. MRP4(ABCC4) as a potential pharmacologic target for cardiovascular disease. Pharmacol. Res., 2016, 107, 381-389.
[42]
Rybalkin, S.D.; Yan, C.; Bornfeldt, K.E.; Beavo, J.A. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res., 2003, 93(4), 280-291.
[43]
Hara, Y.; Sassi, Y.; Guibert, C.; Gambaryan, N.; Dorfmüller, P.; Eddahibi, S.; Lompré, A.M.; Humbert, M.; Hulot, J.S. Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. J. Clin. Invest., 2011, 121(7), 2888-2897.
[44]
Sassi, Y.; Ahles, A.; Truong, D.J.J.; Baqi, Y.; Lee, S.Y.; Husse, B.; Hulot, J.S.; Foinquinos, A.; Thum, T.; Müller, C.E.; Dendorfer, A.; Laggerbauer, B.; Engelhardt, S. Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J. Clin. Invest., 2014, 124(12), 5385-5397.
[45]
Jedlitschky, G.; Tirschmann, K.; Lubenow, L.E.; Nieuwenhuis, H.K.; Akkerman, J.W.N.; Greinacher, A.; Kroemer, H.K. The nucleotide transporter MRP4(ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood, 2004, 104(12), 3603-3610.
[46]
Decouture, B.; Dreano, E.; Belleville-Rolland, T.; Kuci, O.; Dizier, B.; Bazaa, A.; Coqueran, B.; Lompre, A-M.; Denis, C.V.; Hulot, J-S.; Bachelot-Loza, C.; Gaussem, P. Impaired platelet activation and cAMP homeostasis in MRP4-deficient mice. Blood, 2015, 126(15), 1823-1830.
[47]
Cheepala, S.B.; Pitre, A.; Fukuda, Y.; Takenaka, K.; Zhang, Y.; Wang, Y.; Frase, S.; Pestina, T.; Gartner, T.K.; Jackson, C.; Schuetz, J.D. The ABCC4 membrane transporter modulates platelet aggregation. Blood, 2015, 126(20), 2307-2319.
[48]
Borgognone, A.; Pulcinelli, F.M. Reduction of cAMP and cGMP inhibitory effects in human platelets by MRP4-mediated transport. Thromb. Haemost., 2012, 108(5), 955-962.
[49]
Barnes, S.N.; Aleksunes, L.M.; Augustine, L.; Scheffer, G.L.; Goedken, M.J.; Jakowski, A.B.; Pruimboom-Brees, I.M.; Cherrington, N.J.; Manautou, J.E. Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases. Drug Metab. Dispos., 2007, 35(10), 1963-1969.
[50]
Zollner, G.; Wagner, M.; Fickert, P.; Silbert, D.; Gumhold, J.; Zatloukal, K.; Denk, H.; Trauner, M. Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int., 2007, 27(7), 920-929.
[51]
Mennone, A.; Soroka, C.J.; Cai, S-Y.; Harry, K.; Adachi, M.; Hagey, L.; Schuetz, J.D.; Boyer, J.L. Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology, 2006, 43(5), 1013-1021.
[52]
Marschall, H.U.; Wagner, M.; Zollner, G.; Fickert, P.; Diczfalusy, U.; Gumhold, J.; Silbert, D.; Fuchsbichler, A.; Benthin, L.; Grundström, R.; Gustafsson, U.; Sahlin, S.; Einarsson, C.; Trauner, M. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology, 2005, 129(2), 476-485.
[53]
Aleksunes, L.M.; Slitt, A.M.; Cherrington, N.J.; Thibodeau, M.S.; Klaassen, C.D.; Manautou, J.E. Differential expression of mouse hepatic transporter genes in response to acetaminophen and carbon tetrachloride. Toxicol. Sci., 2005, 83(1), 44-52.
[54]
Aleksunes, L.M.; Scheffer, G.L.; Jakowski, A.B.; Pruimboom-Brees, I.M.; Manautou, J.E. Coordinated expression of multidrug resistance-associated proteins(Mrps) in mouse liver during toxicant-induced injury. Toxicol. Sci., 2006, 89(2), 370-379.
[55]
Maher, J.M.; Aleksunes, L.M.; Dieter, M.Z.; Tanaka, Y.; Peters, J.M.; Manautou, J.E.; Klaassen, C.D. Nrf2- and PPARα-mediated regulation of hepatic mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol. Sci., 2008, 106(2), 319-328.
[56]
Zhang, Z.; Wang, J.; Shen, B.; Peng, C.; Zheng, M. The ABCC4 gene is a promising target for pancreatic cancer therapy. Gene, 2012, 491(2), 194-199.
[57]
Sun, Y.; Shi, N.; Lu, H.; Zhang, J.; Ma, Y.; Qiao, Y.; Mao, Y.; Jia, K.; Han, L.; Liu, F.; Li, H.; Lin, Z.; Li, X.; Zhao, X. ABCC4 copy number variation is associated with susceptibility to esophageal squamous cell carcinoma. Carcinogenesis, 2014, 35(9), 1941-1950.
[58]
Pereira, C.; Queirós, S.; Galaghar, A.; Sousa, H.; Marcos-Pinto, R.; Pimentel-Nunes, P.; Brandão, C.; Medeiros, R.; Dinis-Ribeiro, M. Influence of genetic polymorphisms in prostaglandin E2 pathway(COX-2/HPGD/SLCO2A1/ABCC4) on the risk for colorectal adenoma development and recurrence after polypectomy. Clin. Transl. Gastroenterol., 2016, 7(9), e191.www.ncbi.nlm.nih.gov/pmc/articles/PMC5288593/
[59]
Leonard, G.D.; Fojo, T.; Bates, S.E. The role of ABC transporters in clinical practice. Oncologist, 2003, 8(5), 411-424.
[60]
Copsel, S.; Bruzzone, A.; May, M.; Beyrath, J.; Wargon, V.; Cany, J.; Russel, F.G.; Shayo, C.; Davio, C. Multidrug resistance protein 4/ ATP binding cassette transporter 4: a new potential therapeutic target for acute myeloid leukemia. Oncotarget, 2014, 5(19), 9308-9321.
[61]
Zhao, X.; Guo, Y.; Yue, W.; Zhang, L.; Gu, M.; Wang, Y. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer. OncoTargets Ther., 2014, 7, 343-351.
[62]
Moustafa, M.A.; Ogino, D.; Nishimura, M.; Ueda, N.; Naito, S.; Furukawa, M.; Uchida, T.; Ikai, I.; Sawada, H.; Fukumoto, M. Comparative analysis of ATP-binding cassette(ABC) transporter gene expression levels in peripheral blood leukocytes and in liver with hepatocellular carcinoma. Cancer Sci., 2004, 95(6), 530-536.
[63]
Holla, V.R.; Backlund, M.G.; Yang, P.; Newman, R.a.; DuBois, R.N. Regulation of prostaglandin transporters in colorectal neoplasia. Cancer Prev. Res., 2008, 1(2), 93-99.
[64]
Beretta, G.L.; Benedetti, V.; Cossa, G.; Assaraf, Y.G.A.; Bram, E.; Gatti, L.; Corna, E.; Carenini, N.; Colangelo, D.; Howell, S.B.; Zunino, F.; Perego, P. Increased levels and defective glycosylation of MRPs in ovarian carcinoma cells resistant to oxaliplatin. Biochem. Pharmacol., 2010, 79(8), 1108-1117.
[65]
Bagnoli, M.; Beretta, G.L.; Gatti, L.; Pilotti, S.; Alberti, P.; Tarantino, E.; Barbareschi, M.; Canevari, S.; Mezzanzanica, D.; Perego, P. Clinicopathological impact of ABCC1/MRP1 and ABCC4/MRP4 in epithelial ovarian carcinoma. BioMed Res. Int., 2013, 2013, 1-7.
[66]
Montani, M.; Hermanns, T.; Herrmanns, T.; Müntener, M.; Wild, P.; Sulser, T.; Kristiansen, G. Multidrug resistance protein 4(MRP4) expression in prostate cancer is associated with androgen signaling and decreases with tumor progression. Virchows Arch., 2013, 462(4), 437-443.
[67]
Huynh, T.; Norris, M.D.; Haber, M.; Henderson, M.J. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma. Front. Oncol., 2012, 2, 1-7.
[68]
Borst, P.; Schinkel, A.H. Genetic dissection of the function of mammalian P-glycoproteins. Trends Genet., 1997, 13(6), 217-222.
[69]
Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst., 2000, 92(16), 1295-1302.
[70]
He, Z.; Hu, B.; Tang, L.; Zheng, S.; Sun, Y.; Sheng, Z.; Yao, Y.; Lin, F. The overexpression of MRP4 is related to multidrug resistance in osteosarcoma cells. J. Cancer Res. Ther., 2015, 11(1), 18-23.
[71]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[72]
Zhang, Y.H.; Wu, Q.; Xiao, X.Y.; Li, D.W.; Wang, X.P. Silencing MRP4 by small interfering RNA reverses acquired DDP resistance of gastric cancer cell. Cancer Lett., 2010, 291(1), 76-82.
[73]
Yu, Z.; Zhang, C.; Chai, R.; Du, Y.; Gao, X.; Xing, J.; Yu, E.; Zhang, W.; Zhang, X.; Cao, G.; Fu, C. Prognostic significance and molecular mechanism of ATP-Binding cassette subfamily C member 4 in resistance to neoadjuvant radiotherapy of locally advanced rectal carcinoma. PLoS One, 2014, 9(1), e85446.
[74]
Henderson, M.J.; Haber, M.; Porro, A.; Munoz, M.A.; Iraci, N.; Xue, C.; Murray, J.; Flemming, C.L.; Smith, J.; Fletcher, J.I.; Gherardi, S.; Kwek, C.K.; Russell, A.J.; Valli, E.; London, W.B.; Buxton, A.B.; Ashton, L.J.; Sartorelli, A.C. Cohn, S.L.; Schwab, M.; Marshall, G.M.; Perini, G; Norris, M.D. ABCC multidrug transporters in childhood neuroblastoma: Clinical and biological effects independent of cytotoxic drug efflux. J. Natl. Cancer Inst., 2011, 103(16), 1236-1251.
[75]
Kochel, T.J.; Reader, J.C.; Ma, X.; Kundu, N.; Fulton, A.M. Multiple drug resistance-associated protein(MRP4) exports prostaglandin E2(PGE) and contributes to metastasis in basal/triple negative breast cancer. Oncotarget, 2017, 8(4), 6540-6554.
[76]
Hagmann, W.; Jesnowski, R.; Faissner, R.; Guo, C.; Löhr, J.M. ATP-binding cassette C transporters in human pancreatic carcinoma cell lines. Pancreatology, 2009, 9(1-2), 136-144.
[77]
Wang, D.; DuBois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer, 2010, 10(3), 181-193.
[78]
Yu, D.M.T.; Huynh, T.; Truong, A.M.; Haber, M.; Norris, M.D. ABC transporters and neuroblastoma. Adv. Cancer Res., 2015, 125, 139-170.
[79]
Reid, G.; Wielinga, P.; Zelcer, N.; van der Heijden, I.; Kuil, A.; de Haas, M.; Wijnholds, J.; Borst, P. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9244-9249.
[80]
Wang, D.; DuBois, R.N. The Role of Prostaglandin E(2) in Tumor-Associated Immunosuppression. Trends Mol. Med., 2016, 22(1), 1-3.
[81]
Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut, 2006, 55(1), 115-122.
[82]
Mauritz, I.; Westermayer, S.; Marian, B.; Erlach, N.; Grusch, M.; Holzmann, K. Prostaglandin E(2) stimulates progression-related gene expression in early colorectal adenoma cells. Br. J. Cancer, 2006, 94(11), 1718-1725.
[83]
Pitre, A.; Ge, Y.; Lin, W.; Wang, Y.; Fukuda, Y.; Temirov, J.; Phillips, A.H.; Peters, J.L.; Fan, Y.; Ma, J.; Nourse, A.; Sinha, C.; Lin, H.; Kriwacki, R.; Downing, J.R.; Gruber, T.A.; Centonze, V.E.; Naren, A.P.; Chen, T.; Schuetz, J.D. An unexpected protein interaction promotes drug resistance in leukemia. Nat. Commun., 2017, 8(1547), 1-14.
[84]
Cui, Y.; König, J.; Buchholz, J.K.; Spring, H.; Leier, I.; Keppler, D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol., 1999, 55(5), 929-937.
[85]
Zeng, H.; Liu, G.; Rea, P.A.; Kruh, G.D. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res., 2000, 60(17), 4779-4784.
[86]
Iliás, A.; Urbán, Z.; Seidl, T.L.; Le Saux, O.; Sinkó, E.; Boyd, C.D.; Sarkadi, B.; Váradi, A. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6(MRP6). J. Biol. Chem., 2002, 277(19), 16860-16867.
[87]
Belinsky, M.G.; Chen, Z.S.; Shchaveleva, I.; Zeng, H.; Kruh, G.D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6(MRP6, ABCC6). Cancer Res., 2002, 62(21), 6172-6177.
[88]
Chen, Z.S.; Hopper-Borge, E.; Belinsky, M.G.; Shchaveleva, I.; Kotova, E.; Kruh, G.D. Characterization of the transport properties of human multidrug resistance protein 7(MRP7, ABCC10). Mol. Pharmacol, 2003, 63(0026-895X), 351-358.
[89]
Rius, M.; Hummel-Eisenbeiss, J.; Keppler, D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4(MRP4). J. Pharmacol. Exp. Ther., 2008, 324(1), 86-94.
[90]
Jedlitschky, G.; Burchell, B.; Keppler, D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem., 2000, 275(39), 30069-30074.
[91]
Chen, Z.S.; Guo, Y.; Belinsky, M.G.; Kotova, E.; Kruh, G.D. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8(ABCC11). Mol. Pharmacol., 2005, 67(2), 545-557.
[92]
Kruh, G.D.; Guo, Y.; Hopper-Borge, E.; Belinsky, M.G.; Chen, Z-S. ABCC10, ABCC11, and ABCC12. Pflugers Arch., 2007, 453(5), 675-684.
[93]
Jedlitschky, G.; Leier, I.; Buchholz, U.; Barnouin, K.; Kurz, G.; Keppler, D. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res., 1996, 56(5), 988-994.
[94]
Rius, M.; Thon, W.F.; Keppler, D.; Nies, A.T. Prostanoid transport by multidrug resistance protein 4(MRP4/ABCC4) localized in tissues of the human urogenital tract. J. Urol., 2005, 174(6), 2409-2414.
[95]
Evers, R.; Cnubben, N.H.P.; Wijnholds, J.; Van Deemter, L.; Bladeren P.J, Van .; Borst, P. Transport of glutathione prostaglandin A conjugates by the multidrug resistance protein 1. FEBS Lett., 1997, 419(1), 112-116.
[96]
Paumi, C.M.; Wright, M.; Townsend, A.J.; Morrow, C.S. Multidrug resistance protein(MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-∆12,14prostaglandin J2 in MCF7 breast cancer cells. Biochemistry, 2003, 42(18), 5429-5437.
[97]
Jedlitschky, G.; Leier, I.; Buchholz, U.; Hummel-Eisenbeiss, J.; Burchell, B.; Keppler, D. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2 Biochem. J, 1997, 327, (1)(12), 305-310.
[98]
Kamisako, T.; Leier, I.; Gui, Y.; König, J.; Buchholz, U.; Hummel-Eisenbeiss, J.; Keppler, D. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology, 1999, 30(2), 485-490.
[99]
Lee, Y.A.; Cui, Y.; König, J.; Risch, A.; Jäger, B.; Drings, P.; Bartsch, H.; Keppler, D.; Nies, A.T. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3(MRP3/ABCC3). Pharmacogenetics, 2004, 14(4), 213-223.
[100]
Akita, H.; Suzuki, H.; Hirohashi, T.; Takikawa, H.; Sugiyama, Y. Transport activity of human MRP3 expressed in Sf9 cells: comparative studies with rat MRP3. Pharm. Res., 2002, 19(1), 34-41.
[101]
Rius, M.; Hummel-Eisenbeiss, J.; Hofmann, A.F.; Keppler, D. Substrate specificity of human ABCC4(MRP4)-mediated cotransport of bile acids and reduced glutathione. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(4), 640-649.
[102]
Zelcer, N.; Saeki, T.; Bot, I.; Kuil, A.; Borst, P. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter. Biochem. J., 2003, 369(Pt 1), 23-30.
[103]
Sasaki, M.; Suzuki, H.; Ito, K.; Abe, T.; Sugiyama, Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide(OATP2/SLC21A6) and Multidrug resistance-associated protein 2(MRP2/ABCC2). J. Biol. Chem., 2002, 277(8), 6497-6503.
[104]
Zeng, H.; Chen, Z.S.; Belinsky, M.G.; Rea, P.A.; Kruh, G.D. Transport of methotrexate(MTX) and folates by multidrug resistance protein(MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res., 2001, 61(19), 7225-7232.
[105]
Hooijberg, J.H.; Peters, G.J.; Assaraf, Y.G.; Kathmann, I.; Priest, D.G.; Bunni, M.A.; Veerman, A.J.P.; Scheffer, G.L.; Kaspers, G.J.L.; Jansen, G. The role of multidrug resistance proteins MRP1, MRP2 and MRP3 in cellular folate homeostasis. Biochem. Pharmacol., 2003, 65(5), 765-771.
[106]
Chen, Z.S.; Lee, K.; Walther, S.; Raftogianis, R.B.; Zeng, H.; Kruh, G.D.; Kuwano, M. Analysis of methotrexate and folate transport by multidrug resistance protein 4(ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res., 2002, 62(11), 3144-3150.
[107]
Wielinga, P.; Hooijberg, J.H.; Gunnarsdottir, S.; Kathmann, I.; Reid, G.; Zelcer, N.; Van Der Born, K.; De Haas, M.; Van Der Heijden, I.; Kaspers, G.; Wijnholds, J.; Jansen, G.; Peters, G.; Borst, P. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res., 2005, 65(10), 4425-4430.
[108]
Reichel, V.; Masereeuw, R.; van den Heuvel, J.J.M.W.; Miller, D.S.; Fricker, G. Transport of a fluorescent cAMP analog in teleost proximal tubules. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(6), R2382-R2389.
[109]
van Aubel, R. a M.H.; Smeets, P.H.E.; van den Heuvel, J.J.M.W.; Russel, F.G.M. Human organic anion transporter MRP4(ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal Physiol., 2005, 288(2), 327-333.
[110]
Guo, Y.; Kotova, E.; Chen, Z-S.; Lee, K.; Hopper-Borge, E.; Belinsky, M.G.; Kruh, G.D. MRP8, ATP-binding cassette C11(ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J. Biol. Chem., 2003, 278(32), 29509-29514.
[111]
Klokouzast, A.; Wu, C.P.; Van Veen, H.W.; Barrand, M.A.; Hladky, S.B. cGMP and glutathione-conjugate transport in human erythrocytes: The roles of the multidrug resistance-associated proteins, MRP1, MRP4 and MRP5. Eur. J. Biochem., 2003, 270(18), 3696-3708.
[112]
Laue, S.; Winterhoff, M.; Kaever, V.; Van Den Heuvel, J.J.; Russel, F.G.; Seifert, R. cCMP is a substrate for MRP5. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(9), 893-895.
[113]
Leslie, E.M.; Bowers, R.J.; Deeley, R.G.; Cole, S.P.C. Structural requirements for functional interaction of glutathione tripeptide analogs with the human multidrug resistance protein 1(MRP1). J. Pharmacol. Exp. Ther., 2003, 304(2), 643-653.
[114]
Kopplow, K.; Letschert, K.; König, J.; Walter, B.; Keppler, D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol. Pharmacol., 2005, 68(4), 1031-1038.
[115]
Bortfeld, M.; Rius, M.; König, J.; Herold-Mende, C.; Nies, A.T.; Keppler, D. Human multidrug resistance protein 8(MRP8/ABCC11), an apical efflux pump for steroid sulfates, is an axonal protein of the CNS and peripheral nervous system. Neuroscience, 2006, 137(4), 1247-1257.
[116]
Leier, I.; Jedlitschky, G.; Buchholz, U.; Center, M.; Cole, S.P.; Deeley, R.G.; Keppler, D. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem. J., 1996, 314(2), 433-437.
[117]
Paulusma, C.C.; van Geer, M. a; Evers, R.; Heijn, M.; Ottenhoff, R.; Borst, P.; Oude Elferink, R.P. Canalicular multispecific organic anion transporter/multidrug resistance protein 2 mediates low-affinity transport of reduced glutathione. Biochem. J., 1999, 338(2), 393-401.
[118]
Wijnholds, J.; Mol, C.A.; van Deemter, L.; de Haas, M.; Scheffer, G.L.; Baas, F.; Beijnen, J.H.; Scheper, R.J.; Hatse, S.; De Clercq, E.; Balzarini, J.; Borst, P. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7476-7481.
[119]
Leslie, E.M.; Deeley, R.G.; Cole, S.P.C. Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1(MRP1). Drug Metab. Dispos., 2003, 31(1), 11-15.
[120]
Zelcer, N.; Saeki, T.; Reid, G.; Beijnen, J.H.; Borst, P. Characterization of Drug Transport by the Human Multidrug Resistance Protein 3(ABCC3). J. Biol. Chem., 2001, 276(49), 46400-46407.
[121]
Oleschuk, C.J.; Deeley, R.G.; Cole, S.P.C. Substitution of Trp1242 of TM17 alters substrate specificity of human multidrug resistance protein 3. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(2), 280-289.
[122]
Bakos, E.; Evers, R.; Szakacs, G.; Tusnady, G.E.; Welker, E.; Szabo, K.; de Haas, M.; van Deemter, L.; Borst, P.; Varadi, A.; Sarkadi, B. Functional multidrug resistance protein(MRP1) lacking the N- terminal transmembrane domain. J. Biol. Chem., 1998, 273(48), 32167-32175.
[123]
Slot, A.J.; Molinski, S.V.; Cole, S.P.C. Mammalian multidrug-resistance proteins(MRPs). Essays Biochem., 2011, 50(1), 179-207.
[124]
Kool, M.; van der Linden, M.; de Haas, M.; Scheffer, G.L.; de Vree, J.M.; Smith, A.J.; Jansen, G.; Peters, G.J.; Ponne, N.; Scheper, R.J.; Elferink, R.P.; Baas, F.; Borst, P. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 6914-6919.
[125]
Annilo, T.; Chen, Z.; Shulenin, S.; Costantino, J.; Thomas, L.; Lou, H.; Stefanov, S.; Dean, M. Evolution of the vertebrate ABC gene family: Analysis of gene birth and death. Genomics, 2006, 88(1), 1-11.
[126]
Hopper, E.; Belinsky, M.G.; Zeng, H.; Tosolini, A.; Testa, J.R.; Kruh, G.D. Analysis of the structure and expression pattern of MRP7(ABCC10), a new member of the MRP subfamily. Cancer Lett., 2001, 162(2), 181-191.
[127]
Kruh, G.D.; Belinsky, M.G.; Gallo, J.M.; Lee, K. Physiological and pharmacological functions of Mrp2, Mrp3 and Mrp4 as determined from recent studies on gene-disrupted mice. Cancer Metastasis Rev., 2007, 26(1), 5-14.
[128]
Wielinga, P.R.; Van der Heijden, I.; Reid, G.; Beijnen, J.H.; Wijnholds, J.; Borst, P. Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J. Biol. Chem., 2003, 278(20), 17664-17671.
[129]
Davoren, P.R.; Sutherland, E.W. The effect of L-epinephrine and other agents on the synthesis and release of adenosine 3′,5′- phosphate by whole pigeon erythrocytes. J. Biol. Chem., 1963, 238(9), 3009-3015.
[130]
Brunton, L.L.; Heasley, L.E. cAMP export and its regulation by prostaglandin A1. Methods Enzymol., 1988, 159, 83-93.
[131]
Fehr, T.F.; Dickinson, E.S.; Goldman, S.J.; Slakey, L.L. Cyclic AMP efflux is regulated by occupancy of the adenosine receptor in pig aortic smooth muscle cells. J. Biol. Chem., 1990, 265(19), 10974-10980.
[132]
Billiar, T.R.; Curran, R.D.; Harbrecht, B.G.; Stadler, J.; Williams, D.L.; Ochoa, J.B.; Di Silvio, M.; Simmons, R.L.; Murray, S.A. Association between synthesis and release of cGMP and nitric oxide biosynthesis by hepatocytes. Am. J. Physiol., 1992, 262(4(1)), 1077-1082.
[133]
Scavennec, J.; Carcassonne, Y.; Gastaut, J.A.; Blanc, A.; Cailla, H.L. Relationship between the levels of cyclic cytidine 3′:5′-monophosphate, cyclic guanosine 3′:5′-monophosphate, and cyclic adenosine 3′:5′-monophosphate in urines and leukocytes and the type of human leukemias. Cancer Res., 1981, 41(8), 3222-3227.
[134]
Ørvoll, E.; Lysaa, R.A.; Ravna, A.W.; Sager, G. Misoprostol and the sildenafil analog(PHAR-0099048) modulate cellular efflux of cAMP and cGMP differently. Pharmacol. &amp. Pharm., 2013, 4(1), 104-109.
[135]
Lin, Z.P.; Zhu, Y.L.; Johnson, D.R.; Rice, K.P.; Nottoli, T.; Hains, B.C.; McGrath, J.; Waxman, S.G.; Sartorelli, A.C. Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol. Pharmacol., 2008, 73(1), 243-251.
[136]
Chiavegatti, T.; Costa, V.; Araújo, M.; Godinho, R. Skeletal muscle expresses the extracellular cyclic AMP-adenosine pathway. Br. J. Pharmacol., 2008, 153, (December 2007), 1331-1340.
[137]
Godinho, R.O.; Duarte, T.; Pacini, E.S.A. New perspectives in signaling mediated by receptors coupled to stimulatory G protein: the emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway. Front. Pharmacol., 2015, 6(58), 1-9.
[138]
Adachi, M.; Sampath, J.; Lan, L. Bin; Sun, D.; Hargrove, P.; Flatley, R.; Tatum, A.; Edwards, M.Z.; Wezeman, M.; Matherly, L.; Drake, R.; Schuetz, J. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J. Biol. Chem., 2002, 277(41), 38998-39004.
[139]
Xie, M.; Rich, T.C.; Scheitrum, C.; Conti, M.; Richter, W. Inactivation of multidrug resistance proteins disrupts both cellular extrusion and intracellular degradation of cAMP. Mol. Pharmacol., 2011, 80(2), 281-293.
[140]
Sellers, Z.M.; Naren, A.P.; Xiang, Y.; Best, P.M. MRP4 and CFTR in the regulation of cAMP and β-adrenergic contraction in cardiac myocytes. Eur. J. Pharmacol., 2012, 681(1-3), 80-87.
[141]
Hofer, A.M.; Lefkimmiatis, K. Extracellular calcium and cAMP: second messengers as ‘third messengers’? Physiology., 2007, 22, 320-327.
[142]
Milatovic, D.; Montine, T.J.; Aschner, M. Prostanoid signaling: Dual role for prostaglandin E2 in neurotoxicity. Neurotoxicology, 2011, 32(3), 312-319.
[143]
Narumiya, S.; FitzGerald, G.A. Genetic and pharmacological analysis of prostanoid receptor function. J. Clin. Invest., 2001, 108(1), 25-30.
[144]
Hao, C.M.; Breyer, M.D. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int., 2007, 71(11), 1105-1115.
[145]
Harris, S.G.; Padilla, J.; Koumas, L.; Ray, D.; Phipps, R.P. Prostaglandins as modulators of immunity. Trends Immunol., 2002, 23(3), 144-150.
[146]
Furugen, A.; Yamaguchi, H.; Tanaka, N.; Shiida, N.; Ogura, J.; Kobayashi, M.; Iseki, K. Contribution of multidrug resistance-associated proteins(MRPs) to the release of prostanoids from A549 cells. Prostaglandins Other Lipid Mediat., 2013, 106(1), 37-44.
[147]
Tanaka, N.; Yamaguchi, H.; Mano, N. Transport of eicosapentaenoic acid-derived PGE3, PGF(3α), and TXB3 by ABCC4. PLoS One, 2014, 9(10), e109270.journals.plos.org/plosone/article?id=10.1371/journal.pone.0109270
[148]
Ravna, A.W.; Sylte, I.; Sager, G. A molecular model of a putative substrate releasing conformation of multidrug resistance protein 5(MRP5). Eur. J. Med. Chem., 2008, 43(11), 2557-2567.
[149]
Honorat, M.; Terreux, R.; Falson, P.; Di Pietro, A.; Dumontet, C.; Payen, L. Localization of putative binding sites for cyclic guanosine monophosphate and the anti-cancer drug 5-fluoro-2′-deoxyuridine-5′-monophosphate on ABCC11 in silico models. BMC Struct. Biol., 2013, 13(7), 1-12.
[150]
Haimeur, A.; Deeley, R.G.; Cole, S.P.C. Charged amino acids in the sixth transmembrane helix of multidrug resistance protein 1(MRP1/ABCC1) are critical determinants of transport activity. J. Biol. Chem., 2002, 277(44), 41326-41333.
[151]
Deeley, R.G.; Westlake, C.; Cole, S.P.C. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev., 2006, 86(3), 849-899.
[152]
Oswald, C.; Holland, I.B.; Schmitt, L. The motor domains of ABC-transporters. What can structures tell us? Naunyn Schmiedebergs Arch. Pharmacol., 2006, 372(6), 385-399.
[153]
Safa, A.R. Identification and characterization of the binding sites of P-glycoprotein for multidrug resistance-related drugs and modulators. Curr. Med. Chem., 2004, 4(1), 1-17.
[154]
Frelet, A.; Klein, M. Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett., 2006, 580(4), 1064-1084.
[155]
George, A.M.; Jones, P.M. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog. Biophys. Mol. Biol., 2012, 109(3), 95-107.
[156]
Jones, P.M.; George, A.M. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: Evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins Struct. Funct. Bioinforma., 2009, 75(2), 387-396.
[157]
Jones, P.M.; George, A.M. A reciprocating twin-channel model for ABC transporters. Q. Rev. Biophys., 2014, 3, 1-32.
[158]
Higgins, C.F.; Linton, K.J. The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol., 2004, 11(10), 918-926.
[159]
Rothnie, A.; Callaghan, R.; Deeley, R.G.; Cole, S.P.C. Role of GSH in estrone sulfate binding and translocation by the multidrug resistance protein 1(MRP1/ABCC1). J. Biol. Chem., 2006, 281(20), 13906-13914.
[160]
Wang, E.J.; Casciano, C.N.; Clement, R.P.; Johnson, W.W. Cooperativity in the inhibition of P-glycoprotein-mediated daunorubicin transport: evidence for half-of-the-sites reactivity. Arch. Biochem. Biophys., 2000, 383(1), 91-98.
[161]
Linton, K.J.; Higgins, C.F. Structure and function of ABC transporters: The ATP switch provides flexible control. Pflugers Arch Eur. J. Physiol., 2007, 453(5), 555-567.
[162]
Ravna, A.W.; Sager, G. Molecular model of the outward facing state of the human multidrug resistance protein 4(MRP4/ABCC4). Bioorg. Med. Chem. Lett., 2008, 18(12), 3481-3483.
[163]
Bodo, A.; Bakos, E.; Szeri, F.; Varadi, A.; Sarkadi, B. Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. J. Biol. Chem., 2003, 278(26), 23529-23537.
[164]
Azza, A.K. El-Sheikh, Jeroen J. M. W. van den Heuvel, J.B.K.; Russel, and F.G.M. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein(MRP) 2/ABCC2-and MRP4/ABCC4-mediated methotrexate transport. J. Pharmacol. Exp. Ther., 2007, 320(1), 229-235.
[165]
Reid, G.; Wielinga, P.; Zelcer, N.; De Haas, M.; Van Deemter, L.; Wijnholds, J.; Balzarini, J.; Borst, P. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol., 2003, 63(5), 1094-1103.
[166]
Zelcer, N.; Huisman, M.T.; Reid, G.; Wielinga, P.; Breedveld, P.; Kuil, A.; Knipscheer, P.; Schellens, J.H.M.; Schinkel, A.H.; Borst, P. Evidence for two interacting ligand binding sites in human multidrug resistance protein 2(ATP binding cassette C2). J. Biol. Chem., 2003, 278(26), 23538-23544.
[167]
Zehnpfennig, B.; Urbatsch, I.L.; Galla, H.J. Functional reconstitution of human ABCC3 into proteoliposomes reveals a transport mechanism with positive cooperativity. Biochemistry, 2009, 48(20), 4423-4430.
[168]
Johnson, Z.L.; Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell, 2017, 168(6), 1075-1085.
[169]
Grant, C.E.; Gao, M.; DeGorter, M.K.; Cole, S.P.C.; Deeley, R.G. Structural determinants of substrate specificity differences between human multidrug resistance protein MRP1(ABCC1) and MRP3(ABCC3). Drug Metab. Dispos., 2008, 36(12), 2571-2581.
[170]
Conseil, G.; Cole, S.P.C. Two polymorphic variants of ABCC1 selectively alter drug resistance and inhibitor sensitivity of the multidrug and organic anion transporter multidrug resistance protein 1. Drug Metab. Dispos., 2013, 41(12), 2187-2196.
[171]
Létourneau, I.J.; Deeley, R.G.; Cole, S.P.C. Functional characterization of non-synonymous single nucleotide polymorphisms in the gene encoding human multidrug resistance protein 1(MRP1/ABCC1). Pharmacogenet. Genomics, 2005, 15(9), 647-657.
[172]
El-Sheikh, A.A.K.; van den Heuvel, J.J.M.W.; Krieger, E.; Russel, F.G.M.; Koenderink, J.B. Functional role of arginine 375 in transmembrane helix 6 of multidrug resistance protein 4(MRP4/ABCC4). Mol. Pharmacol., 2008, 74(4), 964-971.
[173]
Yoshiura, K.; Kinoshita, A.; Ishida, T.; Ninokata, A.; Ishikawa, T.; Kaname, T.; Bannai, M.; Tokunaga, K.; Sonoda, S.; Komaki, R.; Ihara, M.; Saenko, V.A.; Alipov, G.K.; Sekine, I.; Komatsu, K.; Takahashi, H.; Nakashima, M.; Sosonkina, N.; Mapendano, C.K.; Ghadami, M.; Nomura, M.; Liang, D.S.; Miwa, N.; Kim, D.K.; Garidkhuu, A.; Natsume, N.; Ohta, T.; Tomita, H.; Kaneko, A.; Kikuchi, M.; Russomando, G.; Hirayama, K.; Ishibashi, M.; Takahashi, A.; Saitou, N.; Murray, J.C.; Saito, S.; Nakamura, Y.; Niikawa, N. A SNP in the ABCC11 gene is the determinant of human earwax type. Nat. Genet., 2006, 38(3), 324-330.
[174]
Koike, K.; Oleschuk, C.J.; Haimeur, A.; Olsen, S.L.; Deeley, R.G.; Cole, S.P.C. Multiple membrane-associated tryptophan residues contribute to the transport activity and substrate specificity of the human multidrug resistance protein, MRP1. J. Biol. Chem., 2002, 277(51), 49495-49503.
[175]
Koike, K.; Conseil, G.; Leslie, E.M.; Deeley, R.G.; Cole, S.P.C. Identification of proline residues in the core cytoplasmic and transmembrane regions of multidrug resistance protein 1(MRP1/ABCC1) important for transport function, substrate specificity, and nucleotide interactions. J. Biol. Chem., 2004, 279(13), 12325-12336.
[176]
Campbell, J.D.; Koike, K.; Moreau, C.; Sansom, M.S.P.; Deeley, R.G.; Cole, S.P.C. Molecular modeling correctly predicts the functional importance of Phe594 in transmembrane helix 11 of the multidrug resistance protein, MRP1(ABCC1). J. Biol. Chem., 2004, 279(1), 463-468.
[177]
Conseil, G.; Deeley, R.G.; Cole, S.P.C. Role of two adjacent cytoplasmic tyrosine residues in MRP1(ABCC1) transport activity and sensitivity to sulfonylureas. Biochem. Pharmacol., 2005, 69(3), 451-461.
[178]
Conseil, G.; Deeley, R.G.; Cole, S.P.C. Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1(ABCC1). J. Biol. Chem., 2006, 281(1), 43-50.
[179]
Conseil, G.; Rothnie, A.J.; Deeley, R.G.; Cole, S.P. Multiple roles of charged amino acids in cytoplasmic loop 7 for expression and function of the multidrug and organic anion transporter MRP1(ABCC1). Mol. Pharmacol., 2009, 75(2), 397-406.
[180]
DeGorter, M.K.; Conseil, G.; Deeley, R.G.; Campbell, R.L.; Cole, S.P.C. Molecular modeling of the human multidrug resistance protein 1(MRP1/ABCC1). Biochem. Biophys. Res. Commun., 2008, 365(1), 29-34.
[181]
Haimeur, A.; Conseil, G.; Deeley, R.G.; Cole, S.P.C. Mutations of charged amino acids in or near the transmembrane helices of the second membrane spanning domain differentially affect the substrate specificity and transport activity of the multidrug resistance protein MRP1(ABCC1). Mol. Pharmacol., 2004, 65(6), 1375-1385.
[182]
Ito, K.; Olsen, S.L.; Qiu, W.; Deeley, R.G.; Cole, S.P. Mutation of a single conserved tryptophan in multidrug resistance protein 1(MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. J. Biol. Chem., 2001, 276(19), 15616-15624.
[183]
Ryu, S.; Kawabe, T.; Nada, S.; Yamaguchi, A. Identification of basic residues involved in drug export function of human multidrug resistance-associated protein 2. J. Biol. Chem., 2000, 275(50), 39617-39624.
[184]
Maeno, K.; Nakajima, A.; Conseil, G.; Rothnie, A.; Deeley, R.G.; Cole, S.P.C. Molecular basis for reduced estrone sulfate transport and altered modulator sensitivity of transmembrane helix(TM) 6 and TM17 mutants of multidrug resistance protein 1(ABCC1). Drug Metab. Dispos., 2009, 37(7), 1411-1420.
[185]
Situ, D.; Haimeur, A.; Conseil, G.; Sparks, K.E.; Zhang, D.; Deeley, R.G.; Cole, S.P.C. Mutational analysis of ionizable residues proximal to the cytoplasmic interface of membrane spanning domain 3 of the multidrug resistance protein, MRP1(ABCC1): glutamate 1204 is important for both the expression and catalytic activity of the transporter. J. Biol. Chem., 2004, 279(37), 38871-38880.
[186]
Zhang, D.W.; Cole, S.P.C.; Deeley, R.G. Identification of a nonconserved amino acid residue in multidrug resistance protein 1 important for determining substrate specificity: Evidence for functional interaction between transmembrane helices 14 and 17. J. Biol. Chem., 2001, 276(37), 34966-34974.
[187]
Zhang, D.W.; Cole, S.P.; Deeley, R.G. Identification of an amino acid residue in multidrug resistance protein 1 critical for conferring resistance to anthracyclines. J. Biol. Chem., 2001, 276(16), 13231-13239.
[188]
Zhang, D.; Cole, S.P.C.; Deeley, R.G. Determinants of the substrate specificity of multidrug resistance protein 1: role of amino acid residues with hydrogen bonding potential in predicted transmembrane helix 17. J. Biol. Chem., 2002, 277(23), 20934-20941.
[189]
Zhang, D.W.; Gu, H.M.; Situ, D.; Haimeur, A.; Cole, S.P.C.; Deeley, R.G. Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1(MRP1/ABCC1): Identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. J. Biol. Chem., 2003, 278(46), 46052-46063.
[190]
Zhang, D.; Nunoya, K.; Vasa, M.; Gu, H.; Theis, A.; Cole, S.P.C.; Deeley, R.G. Transmembrane helix 11 of multidrug resistance protein 1(MRP1/ABCC1): identification of polar amino acids important for substrate specificity and binding of ATP at nucleotide binding domain 1. Biochemistry, 2004, 43(29), 9413-9425.
[191]
Wittgen, H.G.M.; Van Den Heuvel, J.J.M.W.; Krieger, E.; Schaftenaar, G.; Russel, F.G.M.; Koenderink, J.B. Phenylalanine 368 of multidrug resistance-associated protein 4(MRP4/ABCC4) plays a crucial role in substrate-specific transport activity. Biochem. Pharmacol., 2012, 84(3), 366-373.
[192]
Zhang, D.; Nunoya, K.; Vasa, M.; Gu, H.; Cole, S.P.C.; Deeley, R.G. Mutational analysis of polar amino acid residues within predicted transmembrane helices 10 and 16 of multidrug resistance protein 1(ABCC1): effect on substrate specificity. Drug Metab. Dispos., 2006, 34(4), 539-546.
[193]
Banerjee, M.; Marensi, V.; Conseil, G.; Le, X.C.; Cole, S.P.C.; Leslie, E.M. Polymorphic variants of MRP4/ABCC4 differentially modulate the transport of methylated arsenic metabolites and physiological organic anions. Biochem. Pharmacol., 2016, 120, 72-82.
[194]
Notredame, C.; Higgins, D.G.; Heringa, J.; Notredame, C.; Higgins, D.G.; Heringa, J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol., 2000, 302(1), 205-217.
[195]
Akanuma, S.i.; Hosoya, K.i.; Ito, S.; Tachikawa, M.; Terasaki, T.; Ohtsuki, S. Involvement of multidrug resistance-associated protein 4 in efflux transport of prostaglandin E2 across mouse blood-brain barrier and Its inhibition by intravenous administration of cephalosporins. J. Pharmacol. Exp. Ther., 2010, 333(3), 912-919.
[196]
Zhang, D.; Gu, H.; Vasa, M.; Muredda, M.; Cole, S.P.C.; Deeley, R.G. Characterization of the role of polar amino acid residues within predicted transmembrane helix 17 in determining the substrate specificity of multidrug resistance protein 3. Biochemistry, 2003, 42(33), 9989-10000.
[197]
Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 2014, 42, (Web Server issue), W252-258.
[198]
Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-409.
[199]
Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; Mackerell, A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput., 2012, 8(9), 3257-3273.
[200]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[201]
Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27(3), 343-350.
[202]
Webb, B.; Sali, A. Protein Structure Modeling with MODELLER. Methods Mol. Biol., 2017, 1654, 39-54.
[203]
Lovell, S.C.; Davis, I.W.; Arendall, W.B.; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[204]
Yu, M.; Ocana, A.; Tannock, I.F. Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev., 2013, 32(1-2), 211-227.
[205]
Yin, J.; Wang, J. Renal drug transporters and their significance in drug-drug interactions. Acta Pharm. Sin. B, 2016, 6(5), 363-373.
[206]
Sundkvist, E.; Jaeger, R.; Sager, G. Pharmacological characterization of the ATP-dependent low K(m) guanosine 3′,5′-cyclic monophosphate(cGMP) transporter in human erythrocytes. Biochem. Pharmacol., 2002, 63(5), 945-949.
[207]
Wu, C.P.; Klokouzas, A.; Hladky, S.B.; Ambudkar, S.V.; Barrand, M.A. Interactions of mefloquine with ABC proteins, MRP1(ABCC1) and MRP4(ABCC4) that are present in human red cell membranes. Biochem. Pharmacol., 2005, 70(4), 500-510.
[208]
El-Sheikh, A.A.K.; Greupink, R.; Wortelboer, H.M.; van den Heuvel, J.J.M.W.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G.M. Interaction of immunosuppressive drugs with human organic anion transporter(OAT) 1 and OAT3, and multidrug resistance-associated protein(MRP) 2 and MRP4. Transl. Res., 2013, 162(6), 398-409.
[209]
Mutsaers, H.A.M.; van den Heuvel, L.P.; Ringens, L.H.J.; Dankers, A.C.A.; Russel, F.G.M.; Wetzels, J.F.M.; Hoenderop, J.G.; Masereeuw, R. Uremic toxins inhibit transport by breast cancer resistance protein and multidrug resistance protein 4 at clinically relevant concentrations. PLoS One, 2011, 6(4), e18438.journals.plos.org/plosone/article?id=10.1371/journal.pone.0018438
[210]
Kawase, A.; Yamamoto, T.; Egashira, S.; Iwaki, M. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J. Pharmacol. Exp. Ther., 2016, 356(2), 366-374.
[211]
Köck, K.; Ferslew, B.C.; Netterberg, I.; Yang, K.; Urban, T.J.; Swaan, P.W.; Stewart, P.W.; Brouwer, K.L.R. Risk factors for development of cholestatic drug-induced liver injury: Inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab. Dispos., 2014, 42(4), 665-674.
[212]
Dallas, S.; Schlichter, L.; Bendayan, R. Multidrug resistance protein(MRP) 4- and MRP 5-mediated efflux of 9-(2-phosphonylmethoxyethyl)adenine by microglia. J. Pharmacol. Exp. Ther., 2004, 309(3), 1221-1229.
[213]
Pratt, S.; Chen, V.; Perry, W.I.; Starling, J.J.; Dantzig, A.H. Kinetic validation of the use of carboxydichlorofluorescein as a drug surrogate for MRP5-mediated transport. Eur. J. Pharm. Sci., 2006, 27(5), 524-532.
[214]
El-Sheikh, A.A.K.; Van Den Heuvel, J.J.M.W.; Koenderink, J.B.; Russel, F.G.M. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br. J. Pharmacol., 2009, 155(7), 1066-1075.
[215]
Aronsen, L.; Orvoll, E.; Lysaa, R.; Ravna, A.W.; Sager, G. Modulation of high affinity ATP-dependent cyclic nucleotide transporters by specific and non-specific cyclic nucleotide phosphodiesterase inhibitors. Eur. J. Pharmacol., 2014, 745, 249-253.
[216]
Sager, G.; Ørvoll, E.Ø.; Lysaa, R.A.; Kufareva, I.; Abagyan, R.; Ravna, A.W. Novel cGMP efflux inhibitors identified by virtual ligand screening(VLS) and confirmed by experimental studies. J. Med. Chem., 2012, 55(7), 3049-3057.
[217]
Cheung, L.; Flemming, C.L.; Watt, F.; Masada, N.; Yu, D.M.T.; Huynh, T.; Conseil, G.; Tivnan, A.; Polinsky, A.; Gudkov, A.V.; Munoz, M.A.; Vishvanath, A.; Cooper, D.M.F.; Henderson, M.J.; Cole, S.P.C.; Fletcher, J.I.; Haber, M.; Norris, M.D. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4(MRP4). Biochem. Pharmacol., 2014, 91(1), 97-108.
[218]
Csandl, M.A.; Conseil, G.; Cole, S.P.C. Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins(MRP1-4). Drug Metab. Dispos., 2016, 44(6), 857-866.
[219]
Wobst, I.; Ebert, L.; Birod, K.; Wegner, M.S.; Hoffmann, M.; Thomas, D.; Angioni, C.; Parnham, M.J.; Steinhilber, D.; Tegeder, I.; Geisslinger, G.; Grösch, S. R-flurbiprofen traps prostaglandins within cells by inhibition of multidrug resistance-associated protein-4. Int. J. Mol. Sci., 2017, 18(1), 1-16.
[220]
Zhou, S.; Wang, L.; Di, Y.M.; Xue, C.C.; Duan, W. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr. Med. Chem., 2008, 15(20), 1981-2039.
[221]
Cheung, L.; Yu, D.M.T.; Neiron, Z.; Failes, T.W.; Arndt, G.M.; Fletcher, J.I. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem. Pharmacol., 2015, 93(3), 380-388.
[222]
Alexandre, C.; Larry, A.S.; Dominique, P. Method for cancer cell reprograming. US Patent (9,314,460 B. April 9, 2014).
[223]
Montanari, F.; Ecker, G.F. Prediction of drug-ABC-transporter interaction — Recent advances and future challenges. Adv. Drug Deliv. Rev., 2015, 86, 17-26.
[224]
Fukuda, Y.; Takenaka, K.; Sparreboom, A.; Cheepala, S.B.; Wu, C-P.; Ekins, S.; Ambudkar, S.V.; Schuetz, J.D. Human immunodeficiency virus protease inhibitors interact with ATP binding cassette transporter 4/multidrug resistance protein 4: a basis for unanticipated enhanced cytotoxicity. Mol. Pharmacol., 2013, 84(3), 361-371.
[225]
Welch, M.A.; Köck, K.; Urban, T.J.; Brouwer, K.L.R.; Swaan, P.W. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors. Drug Metab. Dispos., 2015, 43(5), 725-734.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy