[1]
Cancer facts & figures 2015. Atlanta: American Cancer society 2015.
[2]
Mandelblatt JS, Cronin KA, Bailey S. Effects of mammography screening under different screening schedules: Model estimates of potential benefits and harms. Ann Intern Med 2009; 151(10): 738-47.
[3]
Yang SK, Moon WK, Cho N, et al. Screening mammography-detected cancers: sensitivity of a computer-aided detection system applied to full-field digital mammograms. Radiology 2007; 244(1): 104-11.
[4]
Mencattini A, Salmeri M, Rabottino G, Salicone S. Metrological characterization of a CADx system for the classification of breast masses in mammograms. IEEE Trans Instrum Meas 2010; 59(11): 2792-9.
[5]
Eltonsy NH, Tourassi GD, Elmaghraby AS. A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging 2007; 26(06): 880-9.
[6]
Méndez AJ, Tahoces PG, Lado MJ, Souto M, Vidal JJ. Computer-aided diagnosis: Automatic detection of malignant masses in digitized mammograms. Med Phys 1998; 25(6): 957-64.
[7]
Castia P, Mencattini A, Salmeri M, et al. Contour-independent detection and classification of mammographiclesions. Biomed Signal Process Control 2016; 25: 165-77.
[8]
Hadjiiski L, Sahiner B, Chan HP, Petrick N, Helvie MA, Gurcan M. Analysis of temporal changes of mammographic features: Computer-aided classification of malignant and benign breast masses. Med Phys 2001; 28(11): 2309-17.
[9]
Tang J, and X. Liu . In: El-Baz, AS Classification of breast mass in mammography with an improved level set segmentation by combining morphological features and texture features. New York: Springer 2011; pp. 119-35.
[10]
Guliato D, Rangayyan RM, Carvalho JD, Santiago SA. Polygonal modeling of contours of breast tumors with the preservation of spicules. IEEE Trans Biomed Eng 2008; 55(1): 14-20.
[11]
Li HD, Kallergi M, Clarke LP, Jain VK, Clark RA. Markov randomfield for tumor detection in digital mammography. IEEE Trans Med Imaging 1995; 14(3): 565-76.
[12]
Li HD, Kallergi M, Clarke LP, Jain VK, Clark RA. An Automatic Mass Detection System in Mammograms Based on Complex Texture Features IEEE J Biomed Health Informat 2014; 18(2): 618= 6=27.
[13]
Sameti M, Ward RK, Morgan-Parkes J, Palcic B. Image feature extraction in the last screening mammograms prior to detection of breast cancer. IEEE J Sel Top Signal Process 2009; 3(1): 46-52.
[14]
Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst 2002; 26(5): 445-63.
[15]
Karahaliou AN, Boniatis IS, Skiadopoulos SG, et al. Breast cancer diagnosis: analyzing texture of tissue surrounding microcalcifications. IEEE Trans Inf Technol Biomed 2008; 12(6): 731-8.
[16]
Nogueira MA, Abreu PH, Martins P, Machado P, Duarte H, Santos J. Image descriptors in radiology images: A systematic review. Artif Intell Rev 2016; 47(4): 531-59.
[17]
Suganthi M, Madheswaran M. An improved medical decision support system to identify the breast cancer using mammogram. J Med Syst 2012; 36(1): 79-91.
[18]
Jiji GW, Marsilin JR. Automatic diagnose of the stages of breast cancer using intelligent technique. J Inst Eng 2013; 93(4): 209-15.
[19]
Asad M, Azeemi NZ, Naqvi SA. Early stage breast cancer detection through mammographic feature analysis. In: 2011 5th international conference on bioinformatics and biomedical engineering 2011; pp. 1-4.
[20]
Maglogiannis I, Zafiropoulos E, Anagnostopoulos I. An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. Appl Intell 2009; 30(1): 24-36.
[21]
Timp S, Varela C, Karssemeijer N. Temporal change analysis for characterization of mass lesions in mammography. IEEE Trans Med Imaging 2007; 26(7): 945-53.
[22]
Liu X, Tang J. Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. Sys J IEEE 2014; 8(3): 910-20.
[23]
Liu X, Zeng Z. A new automatic mass detection method for breast cancer with false positive reduction. Neurocomputing 2014; 152(25): 388-402.
[24]
Sheshadri H, Kandaswamy A. Experimental investigation on breast tissue classification based on statistical feature extraction of mammograms. Comput Med Imaging Graph 2007; 31(1): 46-8.
[25]
Soltanian-Zadeh H, Rafiee-Rad F, Pourabdollah-Nejad SD. Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms. Patt Recogn 2004; 37(10): 1973-86.
[26]
Eltoukhy M, Faye I, Samir B. A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med 2010; 40(4): 384-91.
[27]
Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 2005; 27(10): 1615-30.
[28]
Agostini V, Delsanto S, Knaflitz M, Molinari F. Noise estimation in infrared image sequences: a tool for the quantitative evaluation of the effectiveness of registration algorithms. IEEE Trans Biomed Eng 2008; 55(7): 1917-20.
[29]
Grim J, Somol P, Haindl M, Danes J. Computer-aided evaluation of screening mammograms based on local texture models. IEEE Trans Image Process 2009; 18(4): 765-73.
[30]
Gonzalez RC, Woods RE. Digital image processing. 2nd Edition. Pearson Education, Inc. Upper Saddle River; New Jersey 2002.
[31]
Scutt D, Manning JT, Whitehouse GH, Leinster SJ, Massey CP. The relationship between breast asymmetry, breast size and the occurrence of breast cancer. Br J Radiol 1997; 70(838): 1017-21.
[33]
Ericeira DR, Silva AC, de Paiva AC, Gattass M. Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions. Comput Biol Med 2013; 43(8): 987-99.
[34]
Wu YT, Wei J, Hadjiiski LM, et al. Bilateral analysis based false positive reduction for computer-aided mass detection. Med Phys 2007; 34(8): 3334-44.
[35]
Casti P, Mencattini A, Salmeri M, et al. Towards localization of malignant sites of asymmetry across bilateral mammograms. Comput Methods Programs Biomed 2017; 140: 11-7.
[36]
Casti P, Mencattini A, Salmeri M, Rangayyan R. Analysis of structural similarity in mammograms for detection of bilateral asymmetry. IEEE Trans Med Imaging 2015; 34(2): 662-71.
[37]
Cristianini N, Shawe-Taylor J. An introduction to support vector machines. Cambridge: Cambridge university press 2000.
[38]
Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast: toward a full-field digital mammographic database. Acad Radiol 2011; 19(2): 236-48.