Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Mean Diffusivity in the Dopaminergic System and Neural Differences Related to Dopaminergic System

Author(s): Hikaru Takeuchi* and Ryuta Kawashima

Volume 16, Issue 4, 2018

Page: [460 - 474] Pages: 15

DOI: 10.2174/1570159X15666171109124839

open access plus

Abstract

Background: The mean diffusivity (MD) parameter obtained by diffusion tensor imaging provides a measure of how freely water molecules move in brain tissue. Greater tissue density conferred by closely arrayed cellular structures is assumed to lower MD by inhibiting the free diffusion of water molecules.

Methods: In this paper, we review studies showing MD variation among regions of the brain dopaminergic system (MDDS), especially subcortical structures such as the putamen, caudate nucleus, and globus pallidus, in different conditions with known associations to dopaminergic system function or dysfunction. The methodologies and background related to MD and MDDS are also discussed.

Results: Past studies indicate that MDDS is sensitive to pathological derangement of dopaminergic activity, neural changes caused by cognitive and pharmacological interventions that are known to affect the dopaminergic system, and individual character traits related to dopaminergic function.

Conclusion: These results suggest that MDDS can be one useful tool to tap the neural differences related to the dopaminergic system.

Keywords: Mean diffusivity, dopaminergic system, dopamine, diffusion tensor imaging, basal ganglia, cognition.

Graphical Abstract


© 2025 Bentham Science Publishers | Privacy Policy