Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health

Author(s): Giulia Freer, Fabrizio Maggi and Mauro Pistello*

Volume 26, Issue 6, 2019

Page: [1027 - 1044] Pages: 18

DOI: 10.2174/0929867324666171005112921

Price: $65

Abstract

Background: The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens.

Objective: This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence.

Method: We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome.

Results: A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism.

Conclusion: The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.

Keywords: Virome, microbiome, anelloviruses, torque teno virus, inflammasome, innate immunity, toll-like receptor, pyroptosis.

[1]
Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science, 2012, 336, 1268-1273.
[2]
Tremaroli, V.; Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.
[3]
Whipps, J.M.; Karen Lewis, R.C. In: Mycoparasitism and plant disease control; Burge N., Ed. Fungi Biol Control Syst., Manchester University Press, 1988, 161-187.
[4]
Kim, K.S.; Hong, S.W.; Han, D.; Yi, J.; Jung, J.; Yang, B.G.; Lee, J.Y.; Lee, M.; Surh, C.D. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science, 2016, 351, 858-863.
[5]
Scharschmidt, T.C.; Vasquez, K.S.; Truong, H.A.; Gearty, S.V.; Pauli, M.L.; Nosbaum, A.; Gratz, I.K.; Otto, M.; Moon, J.J.; Liese, J.; Abbas, A.K.; Fischbach, M.A.; Rosenblum, M.D. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity, 2015, 43, 1011-1021.
[6]
Ignacio, A.; Morales, C.I.; Câmara, N.O.S.; Almeida, R.R. Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases. Front. Immunol., 2016, 7, 54.
[7]
Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, 157, 121-141.
[8]
Belkaid, Y.; Segre, J.A. Dialogue between skin microbiota and immunity. Science, 2014, 346, 954-959.
[9]
Hand, T.W.; Vujkovic-Cvijin, I.; Ridaura, V.K.; Belkaid, Y. Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol. Metab., 2016, 27, 831-843.
[10]
Lamkanfi, M.; Dixit, V.M. Modulation of inflammasome pathways by bacterial and viral pathogens. J. Immunol., 2011, 187, 597-602.
[11]
Medzhitov, R.; Janeway, C.A., Jr Decoding the patterns of self and nonself by the innate immune system. Science, 2002, 296, 298-300.
[12]
Pétrilli, V.; Dostert, C.; Muruve, D.A.; Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol., 2007, 19, 615-622.
[13]
Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22, 240-273.
[14]
Janeway, C.A. Jr; Medzhitov R. Innate immune recognition. Annu. Rev. Immunol., 2002, 20, 197-216.
[15]
Chen, I.; Ichinohe, T. Response of host inflammasomes to viral infection. Trends Microbiol., 2015, 23, 55-63.
[16]
Kawai, T.; Akira, S. TLR signaling. Semin. Immunol., 2007, 19, 24-32.
[17]
O’Neil, L.A.; Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol., 2007, 7, 353-364.
[18]
Huysamen, C.; Brown, G.D. The fungal pattern recognition receptor, dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol. Lett., 2009, 290, 121-128.
[19]
Ting, J.P.; Lovering, R.C.; Alnemri, E.S.; Bertin, J.; Boss, J.M.; Davis, B.K.; Flavell, R.A.; Girardin, S.E.; Godzik, A.; Harton, J.A.; Hoffman, H.M.; Hugot, J.P.; Inohara, N.; Mackenzie, A.; Maltais, L.J.; Nunez, G.; Ogura, Y.; Otten, L.A.; Philpott, D.; Reed, J.C.; Reith, W.; Schreiber, S.; Steimle, V.; Ward, P.A. The NLR gene family: a standard nomenclature. Immunity, 2008, 28, 285-287.
[20]
Roberts, T.L.; Idris, A.; Dunn, J.A.; Kelly, G.M.; Burnton, C.M.; Hodgson, S.; Hardy, L.L.; Garceau, V.; Sweet, M.J.; Ross, I.L.; Hume, D.A.; Stacey, K.J. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science, 2009, 323, 1057-1060.
[21]
Yoo, J.S.; Kato, H.; Fujita, T. Sensing viral invasion by RIG-I like receptors. Current Opinion in Microbiology, , 2014, 20, 131-138.
[22]
Ichinohe, T.; Pang, I.K.; Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol., 2010, 11, 404-410.
[23]
Triantafilou, K.; Kar, S.; Vakakis, E.; Kotecha, S.; Triantafilou, M. Human respiratory syncytial virus viroporin SH: a viral recognition pathway used by the host to signal inflammasome activation. Thorax, 2013, 68, 66-75.
[24]
Saito, T.; Owen, D.M.; Jiang, F.; Marcotrigiano, J.; Gale, M., Jr Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 2008, 454, 523-527.
[25]
Rintahaka, J.; Wiik, D.; Kovanen, P.E.; Alenius, H.; Matikainen, S. Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J. Immunol., 2008, 180, 1749-1757.
[26]
Poeck, H.; Bscheider, M.; Gross, O.; Finger, K.; Roth, S.; Rebsamen, M.; Hannesschläger, N.; Schlee, M.; Rothenfusser, S.; Barchet, W.; Kato, H.; Akira, S.; Inoue, S.; Endres, S.; Peschel, C.; Hartmann, G.; Hornung, V.; Ruland, J. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat. Immunol., 2010, 11, 63-69.
[27]
Yoneyama, M.; Kikuchi, M.; Natsukawa, T.; Shinobu, N.; Imaizumi, T.; Miyagishi, M.; Taira, K.; Akira, S.; Fujita, T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol., 2004, 5, 730-737.
[28]
De Vlaminck.;I.; Khush.; K.K.; Strehl.; C.; Kohli.; B.; Luikart.; H.; Neff.; N.F.; Okamoto.; J.; Snyder.; T.M.; Cornfield.; D.N.; Nicolls.; M.R.; Weill D.; Bernstein D.; Valantine HA.; Quake SR. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell, 2013, 155, 1178-1187.
[29]
Rocchi, J.; Ricci, V.; Albani, M.; Lanini, L.; Andreoli, E.; Macera, L.; Pistello, M.; Ceccherini-Nelli, L.; Bendinelli, M.; Maggi, F. Torquetenovirus DNA drives proinflammatory cytokines production and secretion by immune cells via toll-like receptor 9. Virology, 2009, 394, 235-242.
[30]
Ma, Y.; He, B. Recognition of herpes simplex viruses: toll-like receptors and beyond. J. Mol. Biol., 2014, 426, 1133-1147.
[31]
Ohto, U.; Shibata, T.; Tanji, H.; Ishida, H.; Krayukhina, E.; Uchiyama, S.; Miyake, K.; Shimizu, T. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature, 2015, 520, 702-705.
[32]
Garlanda, C.; Dinarello, C.A.; Mantovani, A. The interleukin-1 family: back to the future. Immunity, 2013, 39, 1003-1018.
[33]
Martinon, F.; Tschopp, J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ., 2007, 14, 10-22.
[34]
Man, S.M.; Kanneganti, T.D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol., 2016, 16, 7-21.
[35]
Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev., 2015, 265, 130-142.
[36]
Roers, A.; Hiller, B.; Hornung, V. Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity, 2016, 44, 739-754.
[37]
Henry, T.; Brotcke, A.; Weiss, D.S.; Thompson, L.J.; Monack, D.M. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. J. Exp. Med., 2007, 204, 987-994.
[38]
Malathi, K.; Dong, B.; Gale, M., Jr; Silverman, R.H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 2007, 448, 816-819.
[39]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11, 373-384.
[40]
Ganguly, D.; Chamilos, G.; Lande, R.; Gregorio, J.; Meller, S.; Facchinetti, V.; Homey, B.; Barrat, F.J.; Zal, T.; Gilliet, M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med., 2009, 206, 1983-1994.
[41]
Schulz, O.; Diebold, S.S.; Chen, M.; Näslund, T.I.; Nolte, M.A.; Alexopoulou, L.; Azuma, Y.T.; Flavell, R.A.; Liljeström, P.; Reis e Sousa, C. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature, 2005, 433, 887-892.
[42]
Yang, J.Y.; Kim, M.S.; Kim, E.; Cheon, J.H.; Lee, Y.S.; Kim, Y.; Lee, S.H.; Seo, S.U.; Shin, S.H.; Choi, S.S.; Kim, B.; Chang, S.Y.; Ko, H.J.; Bae, J.W.; Kweon, M.N. Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production. Immunity, 2016, 44, 889-900.
[43]
Dempsey, A.; Bowie, A.G. Innate immune recognition of DNA: a recent history. Virology, 2015, 479, 146-152.
[44]
Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I Interferon pathway. Science, 2013, 339, 786-791.
[45]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455, 674-678.
[46]
Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated.; type I interferon-dependent innate immunity. Nature, 2009, 461, 788-792.
[47]
Karki, R.; Man, S.M.; Malireddi, R.K.; Kesavardhana, S.; Zhu, Q.; Burton, A.R.; Sharma, B.R.; Qi, X.; Pelletier, S.; Vogel, P.; Rosenstiel, P.; Kanneganti, T.D. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature, 2016, 540, 583-587.
[48]
Coutermarsh-Ott, S.; Eden, K.; Allen, I.C. Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J. Gen. Virol., 2016, 97, 825-838.
[49]
Arnoult, D.; Soares, F.; Tattoli, I.; Girardin, S.E. Mitochondria in innate immunity. EMBO Rep., 2011, 12, 901-910.
[50]
Park, S.; Juliana, C.; Hong, S.; Datta, P.; Hwang, I.; Fernandes-Alnemri, T.; Yu, J.W.; Alnemri, E.S. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. J. Immunol., 2013, 191, 4358-4366.
[51]
Sabbah, A.; Chang, T.H.; Harnack, R.; Frohlich, V.; Tominaga, K.; Dube, P.H.; Xiang, Y.; Bose, S. Activation of innate immune antiviral responses by Nod2. Nat. Immunol., 2009, 10, 1073-1080.
[52]
Vegna, S.; Gregoire, D.; Moreau, M.; Lassus, P.; Durantel, D.; Assenat, E.; Hibner, U.; Simonin, Y. NOD1 Participates in the Innate Immune Response Triggered by Hepatitis C Virus Polymerase. J. Virol., 2016, 90, 6022-6035.
[53]
Fan, Y.H.; Roy, S.; Mukhopadhyay, R.; Kapoor, A.; Duggal, P.; Wojcik, G.L.; Pass, R.F.; Arav-Boger, R. Role of nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human cytomegalovirus control in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2016, 113, E7818-E7827.
[54]
Kanneganti, T.D.; Lamkanfi, M.; Núñez, G. Intracellular NOD-like receptors in host defense and disease. Immunity, 2007, 27, 549-559.
[55]
Lupfer, C.R.; Kanneganti, T-D. The role of inflammasome modulation in virulence. Virulence, 2012, 3, 262-270.
[56]
Shrivastava, G.; León-Juárez, M.; García-Cordero, J.; Meza-Sánchez, D.E.; Cedillo-Barrón, L. Inflammasomes and its importance in viral infections. Immunol. Res., 2016, 64, 1101-1117.
[57]
Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. NFkappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183, 787-791.
[58]
Wang, X.; Jiang, W.; Yan, Y.; Gong, T.; Han, J.; Tian, Z.; Zhou, R. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway. Nat. Immunol., 2014, 15, 1126-1133.
[59]
Guo, H.; König, R.; Deng, M.; Riess, M.; Mo, J.; Zhang, L.; Petrucelli, A.; Yoh, S.M.; Barefoot, B.; Samo, M.; Sempowski, G.D.; Zhang, A.; Colberg-Poley, A.M.; Feng, H.; Lemon, S.M.; Liu, Y.; Zhang, Y.; Wen, H.; Zhang, Z.; Damania, B.; Tsao, L.C.; Wang, Q.; Su, L.; Duncan, J.A.; Chanda, S.K.; Ting, J.P. NLRX1 sequesters STING to negatively regulate the Interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe, 2016, 19, 15-28.
[60]
Ishii, K.J.; Coban, C.; Kato, H.; Takahashi, K.; Torii, Y.; Takeshita, F.; Ludwig, H.; Sutter, G.; Suzuki, K.; Hemmi, H.; Sato, S.; Yamamoto, M.; Uematsu, S.; Kawai, T.; Takeuchi, O.; Akira, S. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol., 2006, 7, 40-48.
[61]
Heaton, S.M.; Borg, N.A.; Dixit, V.M. Ubiquitin in the activation and attenuation of innate antiviral immunity. J. Exp. Med., 2016, 213, 1-13.
[62]
Pichlmair, A.; Schulz, O.; Tan, C.P.; Näslund, T.I.; Liljeström, P.; Weber, F.; Reis e Sousa, C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. ScienceScience, 2006, 314, 997-1001.
[63]
Takeuchi, O.; Akira, S. Recognition of viruses by innate immunity. Immunol. Rev., 2007, 220, 214-224.
[64]
Hornung, V. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458, 514-518.
[65]
Jin, T.; Perry, A.; Smith, P.; Jiang, J.; Xiao, T.S. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J. Biol. Chem., 2013, 288, 13225-13235.
[66]
Morrone, S.R.; Matyszewski, M.; Yu, X.; Delannoy, M.; Egelman, E.H.; Sohn, J. Assembly-driven activation of the AIM2 foreign-dsDNA sensor provides a polymerization template for downstream ASC. Nat. Commun., 2015, 6, 7827-7840.
[67]
Blaser, M.J.; Valentine, F.T. Viral Commensalism in Humans? J. Infect. Dis., 2008, 198, 1-3.
[68]
Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature, 2017, 546, 646-650.
[69]
Rascovan, N.; Duraisamy, R.; Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol., 2016, 70, 125-141.
[70]
Parker, M.T. An ecological framework of the human virome provides classification of current knowledge and identifies areas of forthcoming discovery. Yale J. Biol. Med., 2016, 89, 339-351.
[71]
Phan, T.G.; da Costa, A.C.; del Valle Mendoza, J.; Bucardo-Rivera, F.; Nordgren, J.; O’Ryan, M.; Delwart, E. The fecal virome of South and Central American children with diarrhea includes small circular DNA viral genomes of unknown origin. Arch. Virol., 2016, 161, 959-966.
[72]
Matsumoto, S.; Yamasaki, K.; Tsuji, K.; Shirahama, S. Human T lymphotropic virus type 1 infection and gastric cancer development in Japan. J. Infect. Dis., 2008, 198, 10-15.
[73]
Yang, J.Y.; Kim, M.S.; Kim, E.; Cheon, J.H.; Lee, Y.S.; Kim, Y.; Lee, S.H.; Seo, S.U.; Shin, S.H.; Choi, S.S.; Kim, B.; Chang, S.Y.; Ko, H.J.; Bae, J.W.; Kweon, M.N. Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and toll-like receptor 7-mediated interferon-β production. Immunity, 2016, 44, 889-900.
[74]
Duerkop, B.A.; Hooper, L.V. Resident viruses and their interactions with the immune system. Nat. Immunol., 2013, 14, 654-659.
[75]
Vu, D.L.; Cordey, S.; Brito, F.; Kaiser, L. Novel human astroviruses: novel human diseases? J. Clin. Virol., 2016, 82, 56-63.
[76]
De Vlaminck, I.; Khush, K.K.; Strehl, C.; Kohli, B.; Luikart, H.; Neff, N.F.; Okamoto, J.; Snyder, T.M.; Weil, D.; Bernstein, D.; Valantine, H.A.; Quake, S.R. Temporal response of the human virome to immunosuppression and antiviral therapy. Cell, 2013, 55, 1178-1187.
[77]
Nishizawa, T.; Okamoto, H.; Konishi, K.; Yoshizawa, H.; Miyakawa, Y.; Mayumi, M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem. Biophys. Res. Commun., 1997, 241, 92-97.
[78]
Okamoto, H.; Nishizawa, T.; Kato, N.; Ukita, M.; Ikeda, H.; Iizuka, H.; Miyakawa, Y.; Mayumi, M. Molecular cloning and characterization of a novel DNA virus (TTV) associated with posttransfusion hepatitis of unknown etiology. Hepatol. Res., 1998, 10, 1-16.
[79]
Takahashi, K.; Iwasa, Y.; Hijikata, M.; Mishiro, S. Identification of a new human DNA virus (TTV-like mini virus.; TLMV) intermediately related to TT virus and chicken anemia virus. Arch. Virol., 2000, 145, 979-993.
[80]
Ninomiya, M.; Nishizawa, T.; Takahashi, M.; Lorenzo, F.R.; Shimosegawa, T.; Okamoto, H. Identification and genomic characterization of a novel human Torque teno virus of 3.2 kilobases. J. Gen. Virol., 2007, 88, 1939-1944.
[81]
Bendinelli, M.; Pistello, M.; Maggi, F.; Fornai, C.; Freer, G.; Vatteroni, M.L. Molecular properties, biology and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin. Microbiol. Rev., 2001, 14, 98-113.
[82]
Maggi, F.; Pifferi, M.; Tempestini, E.; Lanini, L.; De Marco, E.; Fornai, C. Correlation between Torque tenovirus infection and serum levels of eosinophil cationic protein in children hospitalized for acute respiratory diseases. J. Infect. Dis., 2004, 190, 971-974.
[83]
Maggi, F.; Bendinelli, M. Human anelloviruses and the central nervous system. Rev. Med. Virol., 2010, 20, 392-407.
[84]
Abbas, A.A.; Diamond, J.M.; Chehoud, C.; Chang, B.; Kotzin, J.J.; Young, J.C.; Imai, I.; Haas, A.R.; Cantu, E.; Lederer, D.J.; Meyer, K.; Milewski, R.K.; Olthoff, K.M.; Shaked, A.; Christie, J.D.; Bushman, F.D.; Collman, R.G. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am. J. Transplant., 2017, 17, 1313-1324.
[85]
Li, L.; Deng, X.; Linsuwanon, P.; Bangsberg, D.; Bwana, M.B.; Hunt, P.; Martin, J.N.; Deeks, S.G.; Delwart, E. AIDS alters the commensal plasma virome. J. Virol., 2013, 87, 10912-10915.
[86]
Young, J.C.; Chehoud, C.; Bittinger, K.; Bailey, A.; Diamond, J.M.; Cantu, E.; Haas, A.R.; Abbas, A.; Frye, L.; Christie, J.D.; Bushman, F.D.; Collman, R.G. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am. J. Transplant., 2015, 15, 200-209.
[87]
Focosi, D.; Antonelli, G.; Pistello, M.; Maggi, F. Torquetenovirus: the human virome from bench to bedside. Clin. Microbiol. Infect., 2016, 22, 589-593.
[88]
Allander, T.; Tammi, M.T.; Eriksson, M.; Bjerkner, A.; Tiveljung-Lindell, A.; Andersson, B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA, 2005, 102, 12891-12896.
[89]
Wang, Y.; Zhu, N.; Li, Y.; Lu, R.; Wang, H.; Liu, G.; Zou, X.; Xie, Z.; Tan, W. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China. Clin. Microbiol. Infect., 2016, 22, 458.e1-9.
[90]
Moustafa, A.; Xie, C.; Kirkness, E.; Biggs, W.; Wong, E.; Turpaz, Y. The blood DNA virome in 8,000 humans. PLoS Pathog., 2017, 13, e1006292.
[91]
Roossinck, M.J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol., 2011, 9, 99-108.
[92]
Virgin, H.W. The virome in mammalian physiology and disease. Cell, 2014, 157, 142-150.
[93]
Cadwell, K. Expanding the role of the virome: commensalism in the gut. J. Virol., 2015, 89, 1951-1953.
[94]
Monaco, C.L.; Gootenberg, D.B.; Zhao, G.; Handley, S.A.; Ghebremichael, M.S.; Lim, E.S.; Lankowski, A.; Baldridge, M.T.; Wilen, C.B.; Flagg, M.; Norman, J.M.; Keller, B.C.; Luévano, J.M.; Wang, D.; Boum, Y.; Martin, J.N.; Hunt, P.W.; Bangsberg, D.R.; Siedner, M.J.; Kwon, D.S.; Virgin, H.W. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host Microbe, 2016, 19, 311-322.
[95]
Miao, Z.; Gao, L.; Song, Y.; Yang, M.; Zhang, M.; Lou, J.; Zhao, Y.; Wang, X.; Feng, Y.; Dong, X.; Xia, X. Prevalence and Clinical Impact of Human Pegivirus-1 Infection in HIV-1-Infected Individuals in Yunnan, China. Viruses, 2017, 9, 28.
[96]
Blackard, J.T.; Ma, G.; Welge, J.A.; Taylor, L.E.; Mayer, K.H.; Klein, R.S.; Celentano, D.D.; Sobel, J.D.; Jamieson, D.J.; King, C.C. Cytokine/chemokine expression associated with Human Pegivirus (HPgV) infection in women with HIV. J. Med. Virol., 2017, 89, 1904-1911.
[97]
Ernst, D.; Greer, M.; Akmatova, R.; Pischke, S.; Wedemeyer, H.; Heiken, H.; Tillmann, H.L.; Schmidt, R.E.; Stoll, M. Impact of GB virus C viraemia on clinical outcome in HIV-1 infected patients: A 20-year follow-up study. HIV Med., 2014, 15, 245-250.
[98]
Raffegerst, S.; Steer, B.; Hohloch, M.; Adler, H. Prevention of tumor formation by latent gammaherpesvirus infection. PLoS One, 2015, 10, e0145678.
[99]
de Smit, M.H.; Noteborn, M.H. Apoptosis-inducing proteins in chicken anemia virus and TT virus. Curr. Top. Microbiol. Immunol., 2009, 331, 131-149.
[100]
Kooistra, K.; Zhang, Y.H.; Henriquez, N.V.; Weiss, B.; Mumberg, D.; Noteborn, M.H. TT virus-derived apoptosis-inducing protein induces apoptosis preferentially in hepatocdellular carcinoma-derived cells. J. Gen. Virol., 2004, 85, 1445-1450.
[101]
Chaabane, W.; Cieślar-Pobuda, A.; El-Gazzah, M.; Jain, M.V.; Rzeszowska-Wolny, J.; Rafat, M.; Stetefeld, J.; Ghavami, S.; Los, M.J. Human-gyrovirus-Apoptin triggers mitochondrial death pathway--Nur77 is required for apoptosis triggering. Neoplasia, 2014, 16, 679-693.
[102]
Backendorf, C.; Noteborn, M.H. Apoptin towards safe and efficient anticancer therapies. Adv. Exp. Med. Biol., 2014, 818, 39-59.
[103]
Zheng, H.; Ye, L.; Fang, X.; Li, B.; Wang, Y.; Xiang, X.; Kong, L.; Wang, W.; Zeng, Y.; Ye, L.; Wu, Z.; She, Y.; Zhou, X. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with ikappaB kinases. J. Virol., 2007, 81, 11917-11924.
[104]
Lanini, L.; Focosi, D.; Scatena, F.; Maggi, F. Attempt to classify the clinical impact of DNA viruses according to the ability to activate the innate immune system. J. Med. Virol., 2011, 83, 1060-1062.
[105]
Lin, H.; Sullivan, C.S. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 2004, 5, 522-531.
[106]
Sorel, O.; Dewals, B.G. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol. Concepts, 2016, 7, 229-239.
[107]
Kincaid, R.P.; Sullivan, C.S. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog., 2012, 8, e1003018.
[108]
Liu, D.G. MicroRNAs in human virus genomes: helping hands for viral infection. MicroRNA, 2014, 3, 75-85.
[109]
Cullen, B.R. MicroRNAs as mediators of viral evasion of the immune system. Nat. Immunol., 2013, 14, 205-210.
[110]
Kincaid, R.P.; Burke, J.M.; Cox, J.C.; de Villiers, E.M.; Sullivan, C.S. A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLoS Pathog., 2013, 9, e1003818.
[111]
Vignolini, T.; Macera, L.; Antonelli, G.; Pistello, M.; Maggi, F.; Giannecchini, S. Investigation on torquetenovirus (TTV) microRNA transcriptome in vivo. Virus Res., 2016, 217, 18-22.
[112]
Devasthanam, A.S. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence, 2014, 5, 270-277.
[113]
Gram, A.M.; Frenkel, J.; Ressing, M.E. Inflammasomes and viruses: cellular defense versus viral offence. J. Gen. Virol., 2012, 93, 2063-2075.
[114]
Karim, R.; Meyers, C.; Backendorf, C.; Ludigs, K.; Offringa, R.; van Ommen, G.J.; Melief, C.J.; van der Burg, S.H.; Boer, J.M. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One, 2011, 6, e17848.
[115]
Niebler, M.; Qian, X.; Höfler, D.; Kogosov, V.; Kaewprag, J.; Kaufmann, A.M.; Ly, R.; Böhmer, G.; Zawatzky, R.; Rösl, F.; Rincon-Orozco, B. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3- ubiquitin ligase E6-AP and p53. PLoS Pathog., 2013, 9, e1003536.
[116]
Radko, S.; Koleva, M.; James, K.M.D.; Jung, R.; Mymryk, J.S.; Pelka, P. Adenovirus E1A targets the DREF nuclear factor to regulate virus gene expression.; DNA replication.; and growth. J. Virol., 2014, 88, 13469-13481.
[117]
Schreiner, S.; Wodrich, H. Virion factors that target Daxx to overcome intrinsic immunity. J. Virol., 2013, 87, 10412-10422.
[118]
Rowe, M.; Glaunsinger, B.; van Leeuwen, D.; Zuo, J.; Sweetman, D.; Ganem, D.; Middeldorp, J.; Wiertz, E.J.; Ressing, M.E. Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc. Natl. Acad. Sci. USA, 2007, 104, 3366-3371.
[119]
Wulan, W.N.; Heydet, D.; Walker, E.J.; Gahan, M.E.; Ghildyal, R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front. Microbiol., 2015, 6, 1-10.
[120]
Tycowski, K.T.; Guo, Y.E.; Lee, N.; Moss, W.N.; Vallery, T.K.; Xie, M.; Steitz, J.A. Viral noncoding RNAs: more surprises. Genes Dev., 2015, 29, 567-584.
[121]
Haneklaus, M.; Gerlic, M.; Kurowska-Stolarska, M.; Rainey, A.A.; Pich, D.; McInnes, I.B.; Hammerschmidt, W.; O’Neill, L.A.; Masters, S.L. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1 production. J. Immunol., 2012, 189, 3795-3799.
[122]
Honda, T.; Tomonaga, K. Endogenous non-retroviral RNA virus elements evidence a novel type of antiviral immunity. Mob. Genet. Elements, 2016, 6, e1165785.
[123]
Shirota, H.; Tross, D.; Klinman, D.M. CpG oligonucleotides as cancer vaccine adjuvants. Vaccines , 2015, 3, 390-407.
[124]
Baskin, C.R.; Bielefeldt-Ohmann, H.; Tumpey, T.M.; Sabourin, P.J.; Long, J.P.; Garcia-Sastre, A.; Tolnay, A.E.; Albrecht, R.; Pyles, J.A.; Olson, P.H.; Aicher, L.D.; Rosenzweig, E.R.; Murali-Krishna, K.; Clark, E.A.; Kotur, M.S.; Fornek, J.L.; Proll, S.; Palermo, R.E.; Sabourin, C.L.; Katze, M.G. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc. Natl. Acad. Sci. USA, 2009, 106, 3455-3460.
[125]
Versteeg, G.A.; Garcia-Sastre, A. Viral tricks to grid-lock the type I interferon system. Curr. Opin. Microbiol., 2010, 13, 508-516.
[126]
Fitzgerald, M.; Rawling, D.C.; Vela, A.; Pyle, A.M. An evolving arsenal: viral RNA detection by RIG-I-like receptors. Curr. Opin. Microbiol., 2014, 20, 76-81.
[127]
Chiang, C.; Gack, M.U. Post-translational control of intracellular pathogen sensing pathways. Trends Immunol., 2017, 38, 39-52.
[128]
Kell, A.M.; Gale, M., Jr RIG-I in RNA virus recognition. Virology, 2015, 479-480, 110-121.
[129]
Yoneyama, M.; Onomoto, K.; Jogi, M.; Akaboshi, T.; Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol., 2015, 32, 48-53.
[130]
Gregory, S.M.; Davis, B.K.; West, J.A.; Taxman, D.J.; Matsuzawa, S.; Reed, J.C.; Ting, J.P.; Damania, B. Discovery of a viral NLR homolog that inhibits the inflammasome. Science, 2011, 331, 330-334.
[131]
Boyle, J.P.; Monie, T.P. Computational analysis predicts the Kaposi’s sarcoma-associated herpesvirus tegument protein ORF63 to be alpha helical. Proteins, 2012, 80, 2063-2070.
[132]
Gerlic, M.; Faustin, B.; Postigo, A.; Yu, E.C.; Proell, M.; Gombosuren, N.; Krajewska, M.; Flynn, R.; Croft, M.; Way, M.; Satterthwait, A.; Liddington, R.C.; Salek-Ardakani, S.; Matsuzawa, S.; Reed, J.C. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Natl. Acad. Sci. USA., 2013, 110, 7808-7813.
[133]
Marshall, B.; Puthalakath, H.; Caria, S.; Chugh, S.; Doerflinger, M.; Colman, P.M.; Kvansakul, M. Variola virus F1L is a Bcl-2-like protein that unlike its vaccinia virus counterpart inhibits apoptosis independent of Bim. Cell Death Dis., 2015, 6, e1680.
[134]
Komune, N.; Ichinohe, T.; Ito, M.; Yanagi, Y. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1 secretion. J. Virol., 2011, 85, 13019-13026.
[135]
Johnston, J.B.; Barrett, J.W.; Nazarian, S.H.; Goodwin, M.; Ricciuto, D.; Wang, G.; McFadden, G. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity, 2005, 23, 587-598.
[136]
Dorfleutner, A.; Talbott, S.J.; Bryan, N.B.; Funya, K.N.; Rellick, S.L.; Reed, J.C.; Shi, X.; Rojanasakul, Y.; Flynn, D.C.; Stehlik, C. A Shope fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes, 2007, 35, 685-694.
[137]
Stehlik, C.; Dorfleutner, A. COPs and POPs: modulators of inflammasome activity. J. Immunol., 2007, 179, 7993-7998.
[138]
Guo, H.; Callaway, J.B.; Ting, J.P. Inflammasomes: mechanism of action.; role in disease.; and therapeutics. Nat. Med., 2015, 21, 677-687.
[139]
Griffin, D.E. The immune response in measles: virus control.; clearance and protective immunity. Viruses, 2016, 8, e282.
[140]
Weber-Gerlach, M.; Weber, F. Standing on three legs: antiviral activities of RIG-I against influenza viruses. Curr. Opin. Immunol., 2016, 42, 71-75.
[141]
Guo, H.C.; Jin, Y.; Zhi, X.Y.; Yan, D.; Sun, S.Q. NLRP3 inflammasome activation by viroporins of animal viruses. Viruses, 2015, 7, 3380-3391.
[142]
Moriyama, M.; Chen, I.Y.; Kawaguchi, A.; Koshiba, T.; Nagata, K.; Takeyama, H.; Hasegawa, H.; Ichinohe, T. The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated interleukin-1β secretion. J. Virol., 2016, 90, 4105-4114.
[143]
Wang, H.; Lei, X.; Xiao, X.; Yang, C.; Lu, W.; Huang, Z.; Leng, Q.; Jin, Q.; He, B.; Meng, G.; Wang, J. Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome. Cell Reports, 2015, 12, 42-48.
[144]
Best, S.M. Viral subversion of apoptotic enzymes: escape from death row. Annu. Rev. Microbiol., 2008, 62, 171-192.
[145]
Macen, J.L.; Garner, R.S.; Musy, P.Y.; Brooks, M.A.; Turner, P.C.; Moyer, R.W.; McFadden, G.; Bleackley, R.C. Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Proc. Natl. Acad. Sci. USA, 1996, 93, 9108-9113.
[146]
Ray, C.A.; Black, R.A.; Kronheim, S.R.; Greenstreet, T.A.; Sleath, P.R.; Salvesen, G.S.; Pickup, D.J. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell, 1992, 69, 597-604.
[147]
Young, J.L.; Sukhova, G.K.; Foster, D.; Kisiel, W.; Libby, P.; Schönbeck, U. The serpin proteinase inhibitor 9 is an endogenous inhibitor of interleukin 1 beta-converting enzyme (caspase-1) activity in human vascular smooth muscle cells. J. Exp. Med., 2000, 191, 1535-1544.
[148]
Messud-Petit, F.; Gelfi, J.; Delverdier, M.; Amardeilh, M.F.; Py, R.; Sutter, G.; Bertagnoli, S. Serp2.; an inhibitor of the interleukin-1b-converting enzyme.; is critical in the pathobiology of myxoma virus. J. Virol., 1998, 72, 7830-7839.
[149]
Kettle, S.; Alcamí, A.; Khanna, A.; Ehret, R.; Jassoy, C.; Smith, G.L. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1b-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis.; but does not prevent IL-1b-induced fever. J. Gen. Virol., 1997, 78, 677-685.
[150]
Smith, V.P.; Bryant, N.A.; Alcamí, A. Ectromelia.; vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J. Gen. Virol., 2000, 81, 1223-1230.
[151]
Stasakova, J. Influenza A mutant viruses with altered NS1 protein function provoke caspase-1 activation in primary human macrophages.; resulting in fast apoptosis and release of high levels of interleukins 1 and 18. J. Gen. Virol., 2005, 86, 185-195.
[152]
Cheong, W-C.; Kang, H-R.; Yoon, H.; Kang, S-J.; Ting, J.P-Y.; Song, M.J. Influenza A virus NS1 protein inhibits the NLRP3 inflammasome. PLoS One, 2015, 10, e0126456.
[153]
Jiang, F.; Ramanathan, A.; Miller, M.T.; Tang, G.Q.; Gale, M., Jr; Patel, S.S.; Marcotrigiano, J. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011, 479, 423-427.
[154]
Kawai, T.; Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad. Sci., 2008, 1143, 1-20.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy