[1]
Printz, C. Precision medicine initiative boosts funding for NCI efforts: Proposal would help broaden availability of targeted therapies. Cancer, 2015, 121(19), 3369-3370.
[2]
Erdogan, H.; Yilmaz, M.; Babur, E.; Duman, M.; Aydin, H.M.; Demirel, G. Fabrication of plasmonic nanorod-embedded dipeptide microspheres via the freeze-quenching method for near-infrared laser-triggered drug-delivery applications. Biomacromolecules, 2016, 17(5), 1788-1794.
[3]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457-1501.
[4]
Whitlow, J.; Pacelli, S.; Paul, A. Polymeric nanohybrids as a new class of therapeutic biotransporters. Macromol. Chem. Phys., 2016, 217(11), 1245-1259.
[5]
Alcantara, D.; Lopez, S.; García-Martin, M.L.; Pozo, D. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine. Nanomedicine (Lond.), 2016, 12(5), 1253-1262.
[6]
Ohta, S.; Glancy, D.; Chan, W.C.W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science, 2016, 351(6275), 841-845.
[7]
Sindhwani, S.; Syed, A.M.; Wilhelm, S.; Glancy, D.R.; Chen, Y.Y.; Dobosz, M.; Chan, W.C.W. Three-dimensional optical mapping of nanoparticle distribution in intact tissues. ACS Nano, 2016, 10(5), 5468-5478.
[8]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[9]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[10]
Kanapathipillai, M.; Brock, A.; Ingber, D.E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev., 2014, 79-80, 107-118.
[11]
Howes, P.D.; Chandrawati, R.; Stevens, M.M. Bionanotechnology. colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205), 1247390.
[12]
Petersen, G.H.; Alzghari, S.K.; Chee, W.; Sankari, S.S.; La-Beck, N.M. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J. Control. Release, 2016, 232, 255-264.
[13]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1, 16014.
[14]
Versluis, F.; van Esch, J.H.; Eelkema, R. Synthetic self-assembled materials in biological environments. Adv. Mater., 2016, 28(23), 4576-4592.
[15]
Li, Y.; Cui, R.; Zhang, P.; Chen, B.B.; Tian, Z.Q.; Li, L.; Hu, B.; Pang, D.W.; Xie, Z.X. Mechanism-oriented controllability of intracellular quantum dots formation: The role of glutathione metabolic pathway. ACS Nano, 2013, 7(3), 2240-2248.
[16]
Zhou, J.; Xu, B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjug. Chem., 2015, 26(6), 987-999.
[17]
Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev., 2015, 115(24), 13165-13307.
[18]
Zhou, J.; Du, X.; Xu, B. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology. Prion, 2015, 9(2), 110-118.
[19]
Zhou, J.; Li, J.; Du, X.; Xu, B. Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.
[20]
Boekhoven, J.; Poolman, J.M.; Maity, C.; Li, F.; van der Mee, L.; Minkenberg, C.B.; Mendes, E.; van Esch, J.H.; Eelkema, R. Catalytic control over supramolecular gel formation. Nat. Chem., 2013, 5(5), 433-437.
[21]
Boekhoven, J.; Hendriksen, W.E.; Koper, G.J.M.; Eelkema, R.; van Esch, J.H. Transient assembly of active materials fueled by a chemical reaction. Science, 2015, 349(6252), 1075-1079.
[22]
Aida, T.; Meijer, E.W.; Stupp, S.I. Functional supramolecular polymers. Science, 2012, 335(6070), 813-817.
[23]
Cui, H.; Cheetham, A.G.; Pashuck, E.T.; Stupp, S.I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc., 2014, 136(35), 12461-12468.
[24]
Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota, R.; Hamachi, I. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat. Chem., 2016, 8(8), 743-752.
[25]
Estroff, L.A.; Hamilton, A.D. Water gelation by small organic molecules. Chem. Rev., 2004, 104(3), 1201-1218.
[26]
Korevaar, P.A.; Grenier, C.; Markvoort, A.J.; Schenning, A.P.H.J.; de Greef, T.F.A.; Meijer, E.W. Model-driven optimization of multicomponent self-assembly processes. Proc. Natl. Acad. Sci. USA, 2013, 110(43), 17205-17210.
[27]
Yang, Z.; Liang, G.; Xu, B. Enzymatic hydrogelation of small molecules. Acc. Chem. Res., 2008, 41(2), 315-326.
[28]
Pollard, T.D.; Cooper, J.A. Actin, a central player in cell shape and movement. Science, 2009, 326(5957), 1208-1212.
[29]
Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature, 2010, 463(7280), 485-492.
[30]
Yang, Z.M.; Gu, H.W.; Fu, D.G.; Gao, P.; Lam, J.K.; Xu, B. Enzymatic formation of supramolecular hydrogels. Adv. Mater., 2004, 16, 1440.
[31]
Yang, Z.; Liang, G.; Wang, L.; Xu, B. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J. Am. Chem. Soc., 2006, 128(9), 3038-3043.
[32]
Wang, H.; Feng, Z.; Wu, D.; Fritzsching, K.J.; Rigney, M.; Zhou, J.; Jiang, Y.; Schmidt-Rohr, K.; Xu, B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovariancancer cells. J. Am. Chem. Soc., 2016, 138(34), 10758-10761.
[33]
Zhou, J.; Du, X.; Yamagata, N.; Xu, B. Enzyme-instructed self-assembly of small D-peptides as a multiple-step process for selectively killing cancer cells. J. Am. Chem. Soc., 2016, 138(11), 3813-3823.
[34]
Gao, Y.; Kuang, Y.; Guo, Z.F.; Guo, Z.; Krauss, I.J.; Xu, B. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J. Am. Chem. Soc., 2009, 131(38), 13576-13577.
[35]
Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun., 2012, 3, 1033.
[36]
Gao, Y.; Berciu, C.; Kuang, Y.; Shi, J.; Nicastro, D.; Xu, B. Probing nanoscale self-assembly of nonfluorescent small molecules inside live mammalian cells. ACS Nano, 2013, 7(10), 9055-9063.
[37]
Gao, Y.; Nieuwendaal, R.; Dimitriadis, E.K.; Hammouda, B.; Douglas, J.F.; Xu, B.; Horkay, F. Supramolecular self-assembly of a model hydrogelator: Characterization of fiber formation and morphology. Gels, 2016, 2(4), 27.
[38]
Hule, R.A.; Nagarkar, R.P.; Hammouda, B.; Schneider, J.P.; Pochan, D.J. Dependence of self-assembled peptide hydrogel network structure on local fibril nanostructure. Macromolecules, 2009, 42(18), 7137-7145.
[39]
Gao, Y.; Kuang, Y.; Du, X.; Zhou, J.; Chandran, P.; Horkay, F.; Xu, B. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment. Langmuir, 2013, 29(49), 15191-15200.
[40]
Wang, H.; Feng, Z.; Wang, Y.; Zhou, R.; Yang, Z.; Xu, B. Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance. J. Am. Chem. Soc., 2016, 138(49), 16046-16055.
[41]
Zhou, J.; Du, X.; Xu, B. Regulating the rate of molecular self-assembly for targeting cancer cells. Angew. Chem. Int. Ed. Engl., 2016, 55(19), 5770-5775.
[42]
Huang, P.; Gao, Y.; Lin, J.; Hu, H.; Liao, H.S.; Yan, X.; Tang, Y.; Jin, A.; Song, J.; Niu, G.; Zhang, G.; Horkay, F.; Chen, X. Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano, 2015, 9(10), 9517-9527.
[43]
Liu, H.; Li, Y.L.; Lyu, Z.L.; Wan, Y.B.; Li, X.H.; Chen, H.B.; Chen, H.; Li, X.M. Enzyme-triggered supramolecular self-assembly of platinum prodrug with enhanced tumor-selective accumulation and reduced systemic toxicity. J. Mater. Chem. B Mater. Biol. Med., 2014, 2, 8303.
[44]
Huang, A.Q.; Ou, C.W.; Cai, Y.B.; Wang, Z.Y.; Li, H.K.; Yang, Z.M.; Chen, M.S. In situ enzymatic formation of supramolecular nanofibers for efficiently killing cancer cells. RSC Advances, 2016, 6, 32519.
[45]
Pires, R.A.; Abul-Haija, Y.M.; Costa, D.S.; Novoa-Carballal, R.; Reis, R.L.; Ulijn, R.V.; Pashkuleva, I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J. Am. Chem. Soc., 2015, 137(2), 576-579.
[46]
Du, X.; Zhou, J.; Wang, H.; Shi, J.; Kuang, Y.; Zeng, W.; Yang, Z.; Xu, B. In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis., 2017, 8(2), e2614.
[47]
Zhou, J.; Du, X.; Berciu, C.; He, H.; Shi, J.; Nicastro, D.; Xu, B. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem, 2016, 1(2), 246-263.
[48]
Li, J.; Kuang, Y.; Shi, J.; Zhou, J.; Medina, J.E.; Zhou, R.; Yuan, D.; Yang, C.; Wang, H.; Yang, Z.; Liu, J.; Dinulescu, D.M.; Xu, B. Enzyme-instructed intracellular molecular self-Assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13307-13311.
[49]
Feng, Z.; Wang, H.; Zhou, R.; Li, J.; Xu, B. Enzyme-instructed assembly and disassembly processes for targeting downregulation in cancer cells. J. Am. Chem. Soc., 2017, 139(11), 3950-3953.
[50]
Li, J.; Shi, J.; Medina, J.E.; Zhou, J.; Du, X.; Wang, H.; Yang, C.; Liu, J.; Yang, Z.; Dinulescu, D.M.; Xu, B. Selectively inducing cancer cell death by intracellular enzyme-instructed self-assembly (EISA) of dipeptide derivatives. Adv. Healthc. Mater., 2017, 6(15), 1601400.
[51]
Zhou, J.; Du, X.; Li, J.; Yamagata, N.; Xu, B. Taurine boosts cellular uptake of small D-peptides for enzyme-instructed intracellular molecular self-assembly. J. Am. Chem. Soc., 2015, 137(32), 10040-10043.
[52]
Liang, G.; Ren, H.; Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem., 2010, 2(1), 54-60.
[53]
Miao, Q.; Bai, X.; Shen, Y.; Mei, B.; Gao, J.; Li, L.; Liang, G. Intracellular self-assembly of nanoparticles for enhancing cell uptake. Chem. Commun. (Camb.), 2012, 48(78), 9738-9740.
[54]
Yuan, Y.; Wang, L.; Du, W.; Ding, Z.; Zhang, J.; Han, T.; An, L.; Zhang, H.; Liang, G. Intracellular self-assembly of taxol nanoparticles for overcoming multidrug resistance. Angew. Chem. Int. Ed. Engl., 2015, 54(33), 9700-9704.
[55]
Tanaka, A.; Fukuoka, Y.; Morimoto, Y.; Honjo, T.; Koda, D.; Goto, M.; Maruyama, T. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J. Am. Chem. Soc., 2015, 137(2), 770-775.
[56]
Kalafatovic, D.; Nobis, M.; Son, J.; Anderson, K.I.; Ulijn, R.V. MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials, 2016, 98, 192-202.
[57]
Zhang, D.; Qi, G.B.; Zhao, Y.X.; Qiao, S.L.; Yang, C.; Wang, H. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater., 2015, 27(40), 6125-6130.
[58]
Ye, D.; Shuhendler, A.J.; Cui, L.; Tong, L.; Tee, S.S.; Tikhomirov, G.; Felsher, D.W.; Rao, J. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem., 2014, 6(6), 519-526.
[59]
Irvine, D.J.; Swartz, M.A.; Szeto, G.L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater., 2013, 12(11), 978-990.
[60]
Tian, Y.; Wang, H.; Liu, Y.; Mao, L.; Chen, W.; Zhu, Z.; Liu, W.; Zheng, W.; Zhao, Y.; Kong, D.; Yang, Z.; Zhang, W.; Shao, Y.; Jiang, X. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett., 2014, 14(3), 1439-1445.
[61]
Liu, Y.; Wang, H.; Li, D.; Tian, Y.; Liu, W.; Zhang, L.; Zheng, W.; Hao, Y.; Liu, J.; Yang, Z.; Shao, Y.; Jiang, X. In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. Nanoscale Horiz., 2016, 1(2), 135.
[62]
Wang, H.M.; Luo, Z.; Wang, Y.C.Z.; He, T.; Yang, C.B.; Ren, C.H.; Ma, L.S.; Gong, C.Y.; Li, X.Y.; Yang, Z.M. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Adv. Funct. Mater., 2016, 26, 1822.
[63]
Pompano, R.R.; Chen, J.; Verbus, E.A.; Han, H.; Fridman, A.; McNeely, T.; Collier, J.H.; Chong, A.S. Titrating T-cell epitopes within self-assembled vaccines optimizes CD4+ helper T cell and antibody outputs. Adv. Healthc. Mater., 2014, 3(11), 1898-1908.
[64]
Rudra, J.S.; Tian, Y.F.; Jung, J.P.; Collier, J.H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl. Acad. Sci. USA, 2010, 107(2), 622-627.
[65]
Wen, Y.; Waltman, A.; Han, H.; Collier, J.H. Switching the immunogenicity of peptide assemblies using surface properties. ACS Nano, 2016, 10(10), 9274-9286.
[66]
Huang, Z.H.; Shi, L.; Ma, J.W.; Sun, Z.Y.; Cai, H.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. A totally synthetic, self-assembling, adjuvant-free MUC1 glycopeptide vaccine for cancer therapy. J. Am. Chem. Soc., 2012, 134(21), 8730-8733.