[1]
Bonilla, I.M.; Sridhar, A.; Györke, S.; Cardounel, A.J.; Carnes, C.A. Nitric oxide synthases and atrial fibrillation. Front. Physiol., 2012, 3, 105.
[2]
Reilly, S.N.; Liu, X.; Carnicer, R.; Recalde, A.; Muszkiewicz, A.; Jayaram, R.; Carena, M.C.; Wijesurendra, R.; Stefanini, M.; Surdo, N.C.; Lomas, O.; Ratnatunga, C.; Sayeed, R.; Krasopoulos, G.; Rajakumar, T.; Bueno-Orovio, A.; Verheule, S.; Fulga, T.A.; Rodriguez, B.; Schotten, U.; Casadei, B. Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase. Sci. Transl. Med., 2016, 8(340), 340ra74.
[3]
Simon, J.N.; Ziberna, K.; Casadei, B. Compromised redox homeostasis, altered nitroso-redox balance, and therapeutic possibilities in atrial fibrillation. Cardiovasc. Res., 2016, 109(4), 510-518.
[4]
Antoniades, C.; Antonopoulos, A.S.; Bendall, J.K.; Channon, K.M. Targeting redox signaling in the vascular wall: From basic science to clinical practice. Curr. Pharm. Des., 2009, 15(3), 329-342.
[5]
Antoniades, C.; Demosthenous, M.; Reilly, S.; Margaritis, M.; Zhang, M.H.; Antonopoulos, A.; Marinou, K.; Nahar, K.; Jayaram, R.; Tousoulis, D.; Bakogiannis, C.; Sayeed, R.; Triantafyllou, C.; Koumallos, N.; Psarros, C.; Miliou, A.; Stefanadis, C.; Channon, K.M.; Casadei, B. Myocardial redox state predicts in-hospital clinical outcome after cardiac surgery effects of short-term pre-operative statin treatment. J. Am. Coll. Cardiol., 2012, 59(1), 60-70.
[6]
Antonopoulos, A.S.; Margaritis, M.; Lee, R.; Channon, K.; Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: Molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des., 2012, 18(11), 1519-1530.
[7]
Antonopoulos, A.S.; Margaritis, M.; Shirodaria, C.; Antoniades, C. Translating the effects of statins: from redox regulation to suppression of vascular wall inflammation. Thromb. Haemost., 2012, 108(5), 840-848.
[8]
Jia, N.; Dong, P.; Ye, Y.; Qian, C.; Dai, Q. Allopurinol attenuates oxidative stress and cardiac fibrosis in angiotensin II-induced cardiac diastolic dysfunction. Cardiovasc. Ther., 2012, 30(2), 117-123.
[9]
Saavedra, W.F.; Paolocci, N.; St John, M.E.; Skaf, M.W.; Stewart, G.C.; Xie, J.S.; Harrison, R.W.; Zeichner, J.; Mudrick, D.; Marbán, E.; Kass, D.A.; Hare, J.M. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ. Res., 2002, 90(3), 297-304.
[10]
Takano, H.; Zou, Y.; Hasegawa, H.; Akazawa, H.; Nagai, T.; Komuro, I. Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid. Redox Signal., 2003, 5(6), 789-794.
[11]
Antoniades, C.; Shirodaria, C.; Crabtree, M.; Rinze, R.; Alp, N.; Cunnington, C.; Diesch, J.; Tousoulis, D.; Stefanadis, C.; Leeson, P.; Ratnatunga, C.; Pillai, R.; Channon, K.M. Altered plasma versus vascular biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase coupling, endothelial function, and inflammation. Circulation, 2007, 116(24), 2851-2859.
[12]
Antoniades, C.; Shirodaria, C.; Warrick, N.; Cai, S.; de Bono, J.; Lee, J.; Leeson, P.; Neubauer, S.; Ratnatunga, C.; Pillai, R.; Refsum, H.; Channon, K.M. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: Effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation, 2006, 114(11), 1193-1201.
[13]
Carnicer, R.; Crabtree, M.J.; Sivakumaran, V.; Casadei, B.; Kass, D.A. Nitric oxide synthases in heart failure. Antioxid. Redox Signal., 2013, 18(9), 1078-1099.
[14]
Carnicer, R.; Hale, A.B.; Suffredini, S.; Liu, X.; Reilly, S.; Zhang, M.H.; Surdo, N.C.; Bendall, J.K.; Crabtree, M.J.; Lim, G.B.; Alp, N.J.; Channon, K.M.; Casadei, B. Cardiomyocyte GTP cyclohydrolase 1 and tetrahydrobiopterin increase NOS1 activity and accelerate myocardial relaxation. Circ. Res., 2012, 111(6), 718-727.
[15]
Idigo, W.O.; Reilly, S.; Zhang, M.H.; Zhang, Y.H.; Jayaram, R.; Carnicer, R.; Crabtree, M.J.; Balligand, J.L.; Casadei, B. Regulation of endothelial nitric-oxide synthase (NOS) S-glutathionylation by neuronal NOS: Evidence of a functional interaction between myocardial constitutive NOS isoforms. J. Biol. Chem., 2012, 287(52), 43665-43673.
[16]
Antoniades, C.; Cunnington, C.; Antonopoulos, A.; Neville, M.; Margaritis, M.; Demosthenous, M.; Bendall, J.; Hale, A.; Cerrato, R.; Tousoulis, D.; Bakogiannis, C.; Marinou, K.; Toutouza, M.; Vlachopoulos, C.; Leeson, P.; Stefanadis, C.; Karpe, F.; Channon, K.M. Induction of vascular GTP-cyclohydrolase I and endogenous tetrahydrobiopterin synthesis protect against inflammation-induced endothelial dysfunction in human atherosclerosis. Circulation, 2011, 124(17), 1860-1870.
[17]
Schramm, A.; Matusik, P.; Osmenda, G.; Guzik, T.J. Targeting NADPH oxidases in vascular pharmacology. Vascul. Pharmacol., 2012, 56(5-6), 216-231.
[18]
Kim, Y.M.; Guzik, T.J.; Zhang, Y.H.; Zhang, M.H.; Kattach, H.; Ratnatunga, C.; Pillai, R.; Channon, K.M.; Casadei, B. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ. Res., 2005, 97(7), 629-636.
[19]
Guzik, T.J.; Sadowski, J.; Guzik, B.; Jopek, A.; Kapelak, B.; Przybylowski, P.; Wierzbicki, K.; Korbut, R.; Harrison, D.G.; Channon, K.M. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2006, 26(2), 333-339.
[20]
Antoniades, C.; Bakogiannis, C.; Tousoulis, D.; Reilly, S.; Zhang, M.H.; Paschalis, A.; Antonopoulos, A.S.; Demosthenous, M.; Miliou, A.; Psarros, C.; Marinou, K.; Sfyras, N.; Economopoulos, G.; Casadei, B.; Channon, K.M.; Stefanadis, C. Preoperative atorvastatin treatment in CABG patients rapidly improves vein graft redox state by inhibition of Rac1 and NADPH-oxidase activity. Circulation, 2010, 122(11)(Suppl.), S66-S73.
[21]
Antonopoulos, A.S.; Margaritis, M.; Coutinho, P.; Shirodaria, C.; Psarros, C.; Herdman, L.; Sanna, F.; De Silva, R.; Petrou, M.; Sayeed, R.; Krasopoulos, G.; Lee, R.; Digby, J.; Reilly, S.; Bakogiannis, C.; Tousoulis, D.; Kessler, B.; Casadei, B.; Channon, K.M.; Antoniades, C. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes, 2015, 64(6), 2207-2219.
[22]
Becker, L.B. vanden Hoek, T.L.; Shao, Z.H.; Li, C.Q.; Schumacker, P.T. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am. J. Physiol., 1999, 277(6), H2240-H2246.
[23]
Berry, C.E.; Hare, J.M. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J. Physiol., 2004, 555(Pt 3), 589-606.
[24]
Dieterich, S.; Bieligk, U.; Beulich, K.; Hasenfuss, G.; Prestle, J. Gene expression of antioxidative enzymes in the human heart: increased expression of catalase in the end-stage failing heart. Circulation, 2000, 101(1), 33-39.
[25]
Nojiri, H.; Shimizu, T.; Funakoshi, M.; Yamaguchi, O.; Zhou, H.; Kawakami, S.; Ohta, Y.; Sami, M.; Tachibana, T.; Ishikawa, H.; Kurosawa, H.; Kahn, R.C.; Otsu, K.; Shirasawa, T. Oxidative stress causes heart failure with impaired mitochondrial respiration. J. Biol. Chem., 2006, 281(44), 33789-33801.
[26]
Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med., 2002, 33(3), 337-349.
[27]
Brigelius-Flohé, R.; Maurer, S.; Lötzer, K.; Böl, G.; Kallionpää, H.; Lehtolainen, P.; Viita, H.; Ylä-Herttuala, S. Overexpression of PHGPx inhibits hydroperoxide-induced oxidation, NFkappaB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis, 2000, 152(2), 307-316.
[28]
Venardos, K.M.; Perkins, A.; Headrick, J.; Kaye, D.M. Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem., 2007, 14(14), 1539-1549.
[29]
Gao, G.; Dudley, S.C. Jr Redox regulation, NF-kappaB, and atrial fibrillation. Antioxid. Redox Signal., 2009, 11(9), 2265-2277.
[30]
Wann, L.S.; Curtis, A.B.; Ellenbogen, K.A.; Estes, N.A.; Ezekowitz, M.D.; Jackman, W.M.; January, C.T.; Lowe, J.E.; Page, R.L.; Slotwiner, D.J.; Stevenson, W.G.; Tracy, C.M.; Fuster, V.; Rydén, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Le Heuzey, J.; Kay, G.N.; Lowe, J.E.; Olsson, S.B.; Prystowsky, E.N.; Tamargo, J.L.; Wann, L.S. Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation, 2013, 127(18), 1916-1926.
[31]
Dudley, S.C., Jr; Hoch, N.E.; McCann, L.A.; Honeycutt, C.; Diamandopoulos, L.; Fukai, T.; Harrison, D.G.; Dikalov, S.I.; Langberg, J. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation, 2005, 112(9), 1266-1273.
[32]
Carnes, C.A.; Chung, M.K.; Nakayama, T.; Nakayama, H.; Baliga, R.S.; Piao, S.; Kanderian, A.; Pavia, S.; Hamlin, R.L.; McCarthy, P.M.; Bauer, J.A.; Van Wagoner, D.R. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res., 2001, 89(6), E32-E38.
[33]
Kim, Y.H.; Lim, D.S.; Lee, J.H.; Shim, W.J.; Ro, Y.M.; Park, G.H.; Becker, K.G.; Cho-Chung, Y.S.; Kim, M.K. Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp. Mol. Med., 2003, 35(5), 336-349.
[34]
Emelyanova, L.; Ashary, Z.; Cosic, M.; Negmadjanov, U.; Ross, G.; Rizvi, F.; Olet, S.; Kress, D.; Sra, J.; Tajik, A.J.; Holmuhamedov, E.L.; Shi, Y.; Jahangir, A. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(1), H54-H63.
[35]
Reilly, S.N.; Jayaram, R.; Nahar, K.; Antoniades, C.; Verheule, S.; Channon, K.M.; Alp, N.J.; Schotten, U.; Casadei, B. Atrial sources of reactive oxygen species vary with the duration and substrate of atrial fibrillation: Implications for the antiarrhythmic effect of statins. Circulation, 2011, 124(10), 1107-1117.
[36]
Kim, Y.M.; Kattach, H.; Ratnatunga, C.; Pillai, R.; Channon, K.M.; Casadei, B. Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J. Am. Coll. Cardiol., 2008, 51(1), 68-74.
[37]
Carnes, C.A.; Janssen, P.M.; Ruehr, M.L.; Nakayama, H.; Nakayama, T.; Haase, H.; Bauer, J.A.; Chung, M.K.; Fearon, I.M.; Gillinov, A.M.; Hamlin, R.L.; Van Wagoner, D.R. Atrial glutathione content, calcium current, and contractility. J. Biol. Chem., 2007, 282(38), 28063-28073.
[38]
Purohit, A.; Rokita, A.G.; Guan, X.; Chen, B.; Koval, O.M.; Voigt, N.; Neef, S.; Sowa, T.; Gao, Z.; Luczak, E.D.; Stefansdottir, H.; Behunin, A.C.; Li, N.; El-Accaoui, R.N.; Yang, B.; Swaminathan, P.D.; Weiss, R.M.; Wehrens, X.H.; Song, L.S.; Dobrev, D.; Maier, L.S.; Anderson, M.E. Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation, 2013, 128(16), 1748-1757.
[39]
Xie, W.; Santulli, G.; Reiken, S.R.; Yuan, Q.; Osborne, B.W.; Chen, B.X.; Marks, A.R. Mitochondrial oxidative stress promotes atrial fibrillation. Sci. Rep., 2015, 5, 11427.
[40]
Redpath, C.J.; Bou Khalil, M.; Drozdzal, G.; Radisic, M.; McBride, H.M. Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One, 2013, 8(7), e69165.
[41]
Adam, O.; Frost, G.; Custodis, F.; Sussman, M.A.; Schäfers, H.J.; Böhm, M.; Laufs, U. Role of Rac1 GTPase activation in atrial fibrillation. J. Am. Coll. Cardiol., 2007, 50(4), 359-367.
[42]
Adam, O.; Lavall, D.; Theobald, K.; Hohl, M.; Grube, M.; Ameling, S.; Sussman, M.A.; Rosenkranz, S.; Kroemer, H.K.; Schäfers, H.J.; Böhm, M.; Laufs, U. Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J. Am. Coll. Cardiol., 2010, 55(5), 469-480.
[43]
Johar, S.; Cave, A.C.; Narayanapanicker, A.; Grieve, D.J.; Shah, A.M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J., 2006, 20(9), 1546-1548.
[44]
Cucoranu, I.; Clempus, R.; Dikalova, A.; Phelan, P.J.; Ariyan, S.; Dikalov, S.; Sorescu, D. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ. Res., 2005, 97(9), 900-907.
[45]
Ago, T.; Kuroda, J.; Pain, J.; Fu, C.; Li, H.; Sadoshima, J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ. Res., 2010, 106(7), 1253-1264.
[46]
Moens, A.L.; Takimoto, E.; Tocchetti, C.G.; Chakir, K.; Bedja, D.; Cormaci, G.; Ketner, E.A.; Majmudar, M.; Gabrielson, K.; Halushka, M.K.; Mitchell, J.B.; Biswal, S.; Channon, K.M.; Wolin, M.S.; Alp, N.J.; Paolocci, N.; Champion, H.C.; Kass, D.A. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation, 2008, 117(20), 2626-2636.
[47]
Sheng, L.; Shen, Q.; Huang, K.; Liu, G.; Zhao, J.; Xu, W.; Liu, Y.; Li, W.; Li, Y. Upregulation of beta3-adrenergic receptors contributes to atrial structural remodeling in rapid pacing induced atrial fi-brillation canines. Cell. Physiol. Biochem., 2012, 30, 372-381.
[48]
Antonopoulos, A.S.; Margaritis, M.; Coutinho, P.; Digby, J.; Patel, R.; Psarros, C.; Ntusi, N.; Karamitsos, T.D.; Lee, R.; De Silva, R.; Petrou, M.; Sayeed, R.; Demosthenous, M.; Bakogiannis, C.; Wordsworth, P.B.; Tousoulis, D.; Neubauer, S.; Channon, K.M.; Antoniades, C. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 2151-2159.
[49]
Antonopoulos, A.S.; Margaritis, M.; Verheule, S.; Recalde, A.; Sanna, F.; Herdman, L.; Psarros, C.; Nasrallah, H.; Coutinho, P.; Akoumianakis, I.; Brewer, A.C.; Sayeed, R.; Krasopoulos, G.; Petrou, M.; Tarun, A.; Tousoulis, D.; Shah, A.M.; Casadei, B.; Channon, K.M.; Antoniades, C. Mutual regulation of epicardial adipose tissue and myocardial redox state by ppar-gamma/adiponectin signalling. Circ. Res., 2016, 118(5), 842-855.
[50]
Margaritis, M.; Antonopoulos, A.S.; Digby, J.; Lee, R.; Reilly, S.; Coutinho, P.; Shirodaria, C.; Sayeed, R.; Petrou, M.; De Silva, R.; Jalilzadeh, S.; Demosthenous, M.; Bakogiannis, C.; Tousoulis, D.; Stefanadis, C.; Choudhury, R.P.; Casadei, B.; Channon, K.M.; Antoniades, C. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation, 2013, 127(22), 2209-2221.
[51]
Blumensatt, M.; Greulich, S.; Herzfeld de Wiza, D.; Mueller, H.; Maxhera, B.; Rabelink, M.J.; Hoeben, R.C.; Akhyari, P.; Al-Hasani, H.; Ruige, J.B.; Ouwens, D.M. Activin A impairs insulin action in cardiomyocytes via up-regulation of miR-143. Cardiovasc. Res., 2013, 100(2), 201-210.
[52]
Burgeiro, A.; Fuhrmann, A.; Cherian, S.; Espinoza, D.; Jarak, I.; Carvalho, R.A.; Loureiro, M.; Patrício, M.; Antunes, M.; Carvalho, E. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am. J. Physiol. Endocrinol. Metab., 2016, 310(7), E550-E564.
[53]
Greulich, S.; de Wiza, D.H.; Preilowski, S.; Ding, Z.; Mueller, H.; Langin, D.; Jaquet, K.; Ouwens, D.M.; Eckel, J. Secretory products of guinea pig epicardial fat induce insulin resistance and impair primary adult rat cardiomyocyte function. J. Cell. Mol. Med., 2011, 15(11), 2399-2410.
[54]
Greulich, S.; Maxhera, B.; Vandenplas, G.; de Wiza, D.H.; Smiris, K.; Mueller, H.; Heinrichs, J.; Blumensatt, M.; Cuvelier, C.; Akhyari, P.; Ruige, J.B.; Ouwens, D.M.; Eckel, J. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation, 2012, 126(19), 2324-2334.
[55]
Venteclef, N.; Guglielmi, V.; Balse, E.; Gaborit, B.; Cotillard, A.; Atassi, F.; Amour, J.; Leprince, P.; Dutour, A.; Clément, K.; Hatem, S.N. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur. Heart J., 2015, 36(13), 795-805a.
[56]
Pfister, R.; Michels, G.; Brägelmann, J.; Sharp, S.J.; Luben, R.; Wareham, N.J.; Khaw, K.T. Plasma vitamin C and risk of hospitalisation with diagnosis of atrial fibrillation in men and women in EPIC-Norfolk prospective study. Int. J. Cardiol., 2014, 177(3), 830-835.
[57]
Antonic, M.; Lipovec, R.; Gregorcic, F.; Juric, P.; Kosir, G. Perioperative ascorbic acid supplementation does not reduce the incidence of postoperative atrial fibrillation in on-pump coronary artery bypass graft patients. J. Cardiol., 2017, 69(1), 98-102.
[58]
Bjordahl, P.M.; Helmer, S.D.; Gosnell, D.J.; Wemmer, G.E.; O’Hara, W.W.; Milfeld, D.J. Perioperative supplementation with ascorbic acid does not prevent atrial fibrillation in coronary artery bypass graft patients. Am. J. Surg., 2012, 204(6), 862-867.
[59]
Korantzopoulos, P.; Kolettis, T.M.; Kountouris, E.; Dimitroula, V.; Karanikis, P.; Pappa, E.; Siogas, K.; Goudevenos, J.A. Oral vitamin C administration reduces early recurrence rates after electrical cardioversion of persistent atrial fibrillation and attenuates associated inflammation. Int. J. Cardiol., 2005, 102(2), 321-326.
[60]
Dehghani, M.R.; Majidi, N.; Rahmani, A.; Asgari, B.; Rezaei, Y. Effect of oral vitamin C on atrial fibrillation development after isolated coronary artery bypass grafting surgery: A prospective randomized clinical trial. Cardiol. J., 2014, 21(5), 492-499.
[61]
Papoulidis, P.; Ananiadou, O.; Chalvatzoulis, E.; Ampatzidou, F.; Koutsogiannidis, C.; Karaiskos, T.; Madesis, A.; Drossos, G. The role of ascorbic acid in the prevention of atrial fibrillation after elective on-pump myocardial revascularization surgery: a single-center experience--a pilot study. Interact. Cardiovasc. Thorac. Surg., 2011, 12(2), 121-124.
[62]
Samadikhah, J.; Golzari, S.E.; Sabermarouf, B.; Karimzadeh, I.; Tizro, P.; Mohammad Khanli, H.; Ghabili, K. Efficacy of combination therapy of statin and vitamin c in comparison with statin in the prevention of post-cabg atrial fibrillation. Adv. Pharm. Bull., 2014, 4(1), 97-100.
[63]
Sarzaeem, M.A.S. Nasim. Vitamin c in prevention of atrial fibrillation after coronary artery bypass graft: Double blind randomized clinical trial. Tehran Univ. Med. J., 2014, 71, 787-793.
[64]
Eslami, M.; Badkoubeh, R.S.; Mousavi, M.; Radmehr, H.; Salehi, M.; Tavakoli, N.; Avadi, M.R. Oral ascorbic acid in combination with beta-blockers is more effective than beta-blockers alone in the prevention of atrial fibrillation after coronary artery bypass grafting. Tex. Heart Inst. J., 2007, 34(3), 268-274.
[65]
Stanger, O.; Aigner, I.; Schimetta, W.; Wonisch, W. Antioxidant supplementation attenuates oxidative stress in patients undergoing coronary artery bypass graft surgery. Tohoku J. Exp. Med., 2014, 232(2), 145-154.
[66]
Rodrigo, R.; Korantzopoulos, P.; Cereceda, M.; Asenjo, R.; Zamorano, J.; Villalabeitia, E.; Baeza, C.; Aguayo, R.; Castillo, R.; Carrasco, R.; Gormaz, J.G. A randomized controlled trial to prevent post-operative atrial fibrillation by antioxidant reinforcement. J. Am. Coll. Cardiol., 2013, 62(16), 1457-1465.
[67]
Guo, X.Y.; Yan, X.L.; Chen, Y.W.; Tang, R.B.; Du, X.; Dong, J.Z.; Ma, C.S. Omega-3 fatty acids for postoperative atrial fibrillation: Alone or in combination with antioxidant vitamins? Heart Lung Circ., 2014, 23(8), 743-750.
[68]
Ali-Hassan-Sayegh, S.; Mirhosseini, S.J.; Rezaeisadrabadi, M.; Dehghan, H.R.; Sedaghat-Hamedani, F.; Kayvanpour, E.; Popov, A.F.; Liakopoulos, O.J. Antioxidant supplementations for prevention of atrial fibrillation after cardiac surgery: an updated comprehensive systematic review and meta-analysis of 23 randomized controlled trials. Interact. Cardiovasc. Thorac. Surg., 2014, 18(5), 646-654.
[69]
Baker, W.L.; Coleman, C.I. Meta-analysis of ascorbic acid for prevention of postoperative atrial fibrillation after cardiac surgery. Am. J. Health Syst. Pharm., 2016, 73(24), 2056-2066.
[70]
Sánchez-Quiñones, J.; Marín, F.; Roldán, V.; Lip, G.Y. The impact of statin use on atrial fibrillation. QJM, 2008, 101(11), 845-861.
[71]
Laufs, U.; Kilter, H.; Konkol, C.; Wassmann, S.; Böhm, M.; Nickenig, G. Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc. Res., 2002, 53(4), 911-920.
[72]
Vaquero, M.; Caballero, R.; Gómez, R.; Núñez, L.; Tamargo, J.; Delpón, E. Effects of atorvastatin and simvastatin on atrial plateau currents. J. Mol. Cell. Cardiol., 2007, 42(5), 931-945.
[73]
Shiroshita-Takeshita, A.; Brundel, B.J.; Burstein, B.; Leung, T.K.; Mitamura, H.; Ogawa, S.; Nattel, S. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc. Res., 2007, 74(1), 75-84.
[74]
Shiroshita-Takeshita, A.; Schram, G.; Lavoie, J.; Nattel, S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation, 2004, 110(16), 2313-2319.
[75]
Kumagai, K.; Nakashima, H.; Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res., 2004, 62(1), 105-111.
[76]
Amit, G.; Katz, A.; Bar-On, S.; Gilutz, H.; Wagshal, A.; Ilia, R.; Henkin, Y. Association of statin therapy and the risk of atrial fibrillation in patients with a permanent pacemaker. Clin. Cardiol., 2006, 29(6), 249-252.
[77]
Richter, B.; Derntl, M.; Marx, M.; Lercher, P.; Gössinger, H.D. Therapy with angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and statins: no effect on ablation outcome after ablation of atrial fibrillation. Am. Heart J., 2007, 153(1), 113-119.
[78]
Adabag, A.S.; Nelson, D.B.; Bloomfield, H.E. Effects of statin therapy on preventing atrial fibrillation in coronary disease and heart failure. Am. Heart J., 2007, 154(6), 1140-1145.
[79]
García-Fernández, A.; Marín, F.; Mainar, L.; Roldán, V.; Martínez, J.G. Effect of statins on preventing recurrence of atrial fibrillation after electrical cardioversion. Am. J. Cardiol., 2006, 98(9), 1299-1300.
[80]
Tveit, A.; Grundtvig, M.; Gundersen, T.; Vanberg, P.; Semb, A.G.; Holt, E.; Gullestad, L. Analysis of pravastatin to prevent recurrence of atrial fibrillation after electrical cardioversion. Am. J. Cardiol., 2004, 93(6), 780-782.
[81]
Baran, Ç.; Durdu, S.; Dalva, K.; Zaim, Ç.; Dogan, A.; Ocakoglu, G.; Gürman, G.; Arslan, Ö.; Akar, A.R. Effects of preoperative short term use of atorvastatin on endothelial progenitor cells after coronary surgery: a randomized, controlled trial. Stem Cell Rev., 2012, 8(3), 963-971.
[82]
Dehghani, M.R.; Kasianzadeh, M.; Rezaei, Y.; Sepehrvand, N. Atorvastatin reduces the incidence of postoperative atrial fibrillation in statin-naive patients undergoing isolated heart valve surgery: A double-blind, placebo-controlled randomized trial. J. Cardiovasc. Pharmacol. Ther., 2015, 20(5), 465-472.
[83]
Ji, Q.; Mei, Y.; Wang, X.; Sun, Y.; Feng, J.; Cai, J.; Xie, S.; Chi, L. Effect of preoperative atorvastatin therapy on atrial fibrillation following off-pump coronary artery bypass grafting. Circ. J., 2009, 73, 2244-2249.
[84]
Ozaydin, M.; Varol, E.; Aslan, S.M.; Kucuktepe, Z.; Dogan, A.; Ozturk, M.; Altinbas, A. Effect of atorvastatin on the recurrence rates of atrial fibrillation after electrical cardioversion. Am. J. Cardiol., 2006, 97(10), 1490-1493.
[85]
Song, Y.B.; On, Y.K.; Kim, J.H.; Shin, D.H.; Kim, J.S.; Sung, J.; Lee, S.H.; Kim, W.S.; Lee, Y.T. The effects of atorvastatin on the occurrence of postoperative atrial fibrillation after off-pump coronary artery bypass grafting surgery. Am. Heart J., 2008, 156373, e379-e316.
[86]
Sun, Y.; Ji, Q.; Mei, Y.; Wang, X.; Feng, J.; Cai, J.; Chi, L. Role of preoperative atorvastatin administration in protection against postoperative atrial fibrillation following conventional coronary artery bypass grafting. Int. Heart J., 2011, 52(1), 7-11.
[87]
Patti, G.; Chello, M.; Candura, D.; Pasceri, V.; D’Ambrosio, A.; Covino, E.; Di Sciascio, G. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients undergoing cardiac surgery: Results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. Circulation, 2006, 114(14), 1455-1461.
[88]
Dotani, M.I.; Elnicki, D.M.; Jain, A.C.; Gibson, C.M. Effect of preoperative statin therapy and cardiac outcomes after coronary artery bypass grafting. Am. J .Cardiol., 2000, 86, 1128-1130, A6..
[89]
Zheng, Z.; Jayaram, R.; Jiang, L.; Emberson, J.; Zhao, Y.; Li, Q.; Du, J.; Guarguagli, S.; Hill, M.; Chen, Z.; Collins, R.; Casadei, B. Perioperative rosuvastatin in cardiac surgery. N. Engl. J. Med., 2016, 374(18), 1744-1753.
[90]
Barakat, A.F.; Mahmoud, A.N.; Elgendy, I.Y. Atrial fibrillation post coronary artery bypass surgery: is there still a role for perioperative statins after STICS? J. Thorac. Dis., 2016, 8(8), 1880-1882.
[91]
Deftereos, S.; Giannopoulos, G.; Kossyvakis, C.; Efremidis, M.; Panagopoulou, V.; Kaoukis, A.; Raisakis, K.; Bouras, G.; Angelidis, C.; Theodorakis, A.; Driva, M.; Doudoumis, K.; Pyrgakis, V.; Stefanadis, C. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: A randomized controlled study. J. Am. Coll. Cardiol., 2012, 60(18), 1790-1796.
[92]
Imazio, M.; Brucato, A.; Ferrazzi, P.; Rovere, M.E.; Gandino, A.; Cemin, R.; Ferrua, S.; Belli, R.; Maestroni, S.; Simon, C.; Zingarelli, E.; Barosi, A.; Sansone, F.; Patrini, D.; Vitali, E.; Trinchero, R.; Spodick, D.H.; Adler, Y.; Investigators, C. Colchicine reduces postoperative atrial fibrillation: Results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation, 2011, 124(21), 2290-2295.
[93]
Singhal, R.; Chang, S.L.; Chong, E.; Hsiao, Y.W.; Liu, S.H.; Tsai, Y.N.; Hsu, C.P.; Lin, Y.J.; Lo, L.W.; Ha, T.L.; Chen, Y.C.; Chen, Y.J.; Chiou, C.W.; Chen, S.A. Colchicine suppresses atrial fibrillation in failing heart. Int. J. Cardiol., 2014, 176(3), 651-660.
[94]
Cavolli, R.; Kaya, K.; Aslan, A.; Emiroglu, O.; Erturk, S.; Korkmaz, O.; Oguz, M.; Tasoz, R.; Ozyurda, U. Does sodium nitroprusside decrease the incidence of atrial fibrillation after myocardial revascularization? A pilot study. Circulation, 2008, 118(5), 476-481.
[95]
Nishijima, Y.; Sridhar, A.; Bonilla, I.; Velayutham, M.; Khan, M.; Terentyeva, R.; Li, C.; Kuppusamy, P.; Elton, T.S.; Terentyev, D.; Györke, S.; Zweier, J.L.; Cardounel, A.J.; Carnes, C.A. Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology. Cardiovasc. Res., 2011, 91(1), 71-79.
[96]
Sakabe, M.; Fujiki, A.; Sakamoto, T.; Nakatani, Y.; Mizumaki, K.; Inoue, H. Xanthine oxidase inhibition prevents atrial fibrillation in a canine model of atrial pacing-induced left ventricular dysfunction. J. Cardiovasc. Electrophysiol., 2012, 23(10), 1130-1135.
[97]
Qiu, J.; Zhao, J.; Li, J.; Liang, X.; Yang, Y.; Zhang, Z.; Zhang, X.; Fu, H.; Korantzopoulos, P.; Liu, T.; Li, G. NADPH oxidase inhibitor apocynin prevents atrial remodeling in alloxan-induced diabetic rabbits. Int. J. Cardiol., 2016, 221, 812-819.
[98]
Schramm, A.; Matusik, P.; Osmenda, G.; Guzik, T.J. Targeting NADPH oxidases in vascular pharmacology. Vascul. Pharmacol., 2012, 56(5-6), 216-231.
[99]
Ozaydin, M.; Peker, O.; Erdogan, D.; Kapan, S.; Turker, Y.; Varol, E.; Ozguner, F.; Dogan, A.; Ibrisim, E. N-acetylcysteine for the prevention of postoperative atrial fibrillation: a prospective, randomized, placebo-controlled pilot study. Eur. Heart J., 2008, 29(5), 625-631.
[100]
Kazemi, B.; Akbarzadeh, F.; Safaei, N.; Yaghoubi, A.; Shadvar, K.; Ghasemi, K. Prophylactic high-dose oral-N-acetylcysteine does not prevent atrial fibrillation after heart surgery: a prospective double blind placebo-controlled randomized clinical trial. Pacing Clin. Electrophysiol., 2013, 36(10), 1211-1219.
[101]
Ozaydin, M.; Icli, A.; Yucel, H.; Akcay, S.; Peker, O.; Erdogan, D.; Varol, E.; Dogan, A.; Okutan, H. Metoprolol vs. carvedilol or carvedilol plus N-acetyl cysteine on post-operative atrial fibrillation: A randomized, double-blind, placebo-controlled study. Eur. Heart J., 2013, 34(8), 597-604.
[102]
Sandesara, C.M.; Chung, M.K.; Van Wagoner, D.R.; Barringer, T.A.; Allen, K.; Ismail, H.M.; Zimmerman, B.; Olshansky, B. A randomized, placebo-controlled trial of omega-3 fatty acids for inhibition of supraventricular arrhythmias after cardiac surgery: The fish trial. J. Am. Heart Assoc., 2012, 1(3), e000547.
[103]
Heidarsdottir, R.; Arnar, D.O.; Skuladottir, G.V.; Torfason, B.; Edvardsson, V.; Gottskalksson, G.; Palsson, R.; Indridason, O.S. Does treatment with n-3 polyunsaturated fatty acids prevent atrial fibrillation after open heart surgery? Europace, 2010, 12, 356-363.
[104]
Heidt, M.C.; Vician, M.; Stracke, S.K.; Stadlbauer, T.; Grebe, M.T.; Boening, A.; Vogt, P.R.; Erdogan, A. Beneficial effects of intravenously administered N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: A prospective randomized study. Thorac. Cardiovasc. Surg., 2009, 57(5), 276-280.
[105]
Calò, L.; Bianconi, L.; Colivicchi, F.; Lamberti, F.; Loricchio, M.L.; de Ruvo, E.; Meo, A.; Pandozi, C.; Staibano, M.; Santini, M. N-3 Fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. J. Am. Coll. Cardiol., 2005, 45(10), 1723-1728.
[106]
Sorice, M.; Tritto, F.P.; Sordelli, C.; Gregorio, R.; Piazza, L. N-3 polyunsaturated fatty acids reduces post-operative atrial fibrillation incidence in patients undergoing “on-pump” coronary artery bypass graft surgery. Monaldi Arch. Chest Dis., 2011, 76(2), 93-98.
[107]
Saravanan, P.; Bridgewater, B.; West, A.L.; O’Neill, S.C.; Calder, P.C.; Davidson, N.C. Omega-3 fatty acid supplementation does not reduce risk of atrial fibrillation after coronary artery bypass surgery: A randomized, double-blind, placebo-controlled clinical trial. Circ Arrhythm Electrophysiol, 2010, 3(1), 46-53.
[108]
Mozaffarian, D.; Marchioli, R.; Macchia, A.; Silletta, M.G.; Ferrazzi, P.; Gardner, T.J.; Latini, R.; Libby, P.; Lombardi, F.; O’Gara, P.T.; Page, R.L.; Tavazzi, L.; Tognoni, G.; Investigators, O. Fish oil and postoperative atrial fibrillation: The Omega-3 Fatty Acids for Prevention of Post-operative Atrial Fibrillation (OPERA) randomized trial. JAMA, 2012, 308(19), 2001-2011.
[109]
Farquharson, A.L.; Metcalf, R.G.; Sanders, P.; Stuklis, R.; Edwards, J.R.; Gibson, R.A.; Cleland, L.G.; Sullivan, T.R.; James, M.J.; Young, G.D. Effect of dietary fish oil on atrial fibrillation after cardiac surgery. Am. J. Cardiol., 2011, 108(6), 851-856.
[110]
Rodrigo, R.; Gutiérrez, R.; Fernández, R.; Guzmán, P. Ageing improves the antioxidant response against postoperative atrial fibrillation: A randomized controlled trial. Interact. Cardiovasc. Thorac. Surg., 2012, 15(2), 209-214.