Abstract
This review focuses on advances in chemistry and pharmacology of synthetic triterpenoid dimers, obtained from natural compounds. Synthetic triterpenoid dimers are divided into specific subgroups based on the structure of main triterpenoid monomeric skeleton. Synthetic triterpenoid derivatives of dimeric structure can be obtained through the covalent linkage of the C-3 hydroxyl or another group, via the C-2 atom or the C-17 carboxyl group (mainly anhydrides, amides or esters). Some triterpenes can undergo chemical transformations leading to the formation of cyclic dimers or other types of dimers. Most of the obtained triterpenoid dimers have been subjected to pharmacological tests evaluating their biological activity, mainly antiviral (HIV-1 RT, HCVpp, VSVpp, HIV-RT-C8166-CCR5), cytotoxic (against e.g. 388, MCF-7, SF-268, NCIH460, KM20L2, DU-145, Hep-G2, A549, BGC-823, PC-3), anti-inflammatory (iNOS, RAW 264.7) and antidiabetic (RMGPa inhibition). The authors also reported the ability of some of the obtained cyclic triterpenoid dimers to recognize anions and to form self-assembled structures.
Keywords: Triterpenes, triterpenoid dimers, dimerization, synthetic dimers, derivatives of triterpenes, pharmacological activity of triterpenes.